• Title/Summary/Keyword: Uncertain Factors

Search Result 320, Processing Time 0.023 seconds

Uncertain Programming Model for Chinese Postman Problem with Uncertain Weights

  • Zhang, Bo;Peng, Jin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2012
  • IChinese postman problem is one of the classical combinatorial optimization problems with many applications. However, in application, some uncertain factors are frequently encountered. This paper employs uncertain programming to deal with Chinese postman problem with uncertain weight Within the framework of uncertainty theory, the concepts of expected shortest route, ${\alpha}$-shortest route, and distribution shortest route are proposed. After that, expected shortest model, and ${\alpha}$-shortest model are constructed. Taking advantage of properties of uncertainty theory, these models can be transf-ormed into their corresponding deterministic forms, which can be solved by classical algorithm..

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

An Effective Management of Construction Insurance (건설공사보험의 효율적 관리방법)

  • Yang Jin-Kook;Kim Soo-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.319-324
    • /
    • 2003
  • There is much more possibilities of encounter of critical problems and uncertain factors in construction project it is very important to analyze various risk factors of the project in its first stage. Because of the uncertainty, we need to study about the construction insurance scheme for risk-transfer within construction management method. This research methodology has been devised through analysis of characteristic of classified domestic construction insurance as well as some related foreign insurance system.

  • PDF

Investigation of Uncertain Factors Affecting on Designing Prefabricated Vertical Drain (PVD 설계 시 고려할 불확실성 요소에 관한 연구)

  • Lee, Song;Choi, Woo-Jin;Kim, Chang-Soo
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.459-465
    • /
    • 2001
  • The Prefabricated Vertical Drain(PVD) method is most widely used technique to accelerate the consolidation process and to strengthen the weak clayey soil in situ. Uncertainty in the consolidation process via the Prefabricated Vertical Drain(PVD), and the effects of uncertainty on the design of PVDs, are investigated in this paper, Among the effect factors, the coefficient of horizontal(radial) consolidation, C$\sub$h/, is the most important and sensitivity analysis of the degree of consolidation with respect to the other effect factors are carried out. For the reliable determination of uncertain quantities, the laboratory and in-situ tests are carried out. Henceforth, probability analysis that take the uncertainty into account are executed and reliable design method is provided in practice.

  • PDF

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.

Robust control design for robots with uncertainty and joint-flexibility (불확실성 및 관절 유연성을 고려한 로봇의 견실제어기 설계)

  • M.C. Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.117-125
    • /
    • 1995
  • An improved robust control law is proposed for uncertain rigid robots. The uncertainty is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, friction, payload change, and external disturbances are all addressed. Based on the possible bound of the uncertainty, the controller is constructed. For uncertain flexible-joint robots, some feedback control terms are then added to the proposed robust control law in order to stabilize the elastic vibrations at the joints. To show that the proposed control laws are indeed applicable, the stability study based on Lyapunov function, a singular perturbation approach, and simulation results are presented.

  • PDF

Robust Hybrid Control for Uncertain Robot Manipulators (불확실 로봇 시스템의 견실 하이브리드 제어기 설계)

  • Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.73-81
    • /
    • 1997
  • An new class of robust position/force hybrid control law is proposed for uncertain robot manipulators. The uncertainty is nonlinear and (plssibly fast) time-varying. Therefore, the uncertain factors such as imper- fect modeling, friction, payload change, and external disturbance are all addressed. Based on the possible bound of the uncertainty, the controller is constructed and the stability study based on Lyapunov function is presented. To show that the proposed control laws are indeed applicable, the theoretical result is applied to a SCARA-type robot manipulator and simulation result is presented.

  • PDF