• Title/Summary/Keyword: Unbonded Post Tension

Search Result 20, Processing Time 0.028 seconds

Modeling Technologies for Unbonded Post-Tension Systems (비부착형 포스트텐션 구조의 모델링기법)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • This study presents modeling technologies applicable to an unbonded post-tension system using a finite element software package. In this study, both direct modeling method and multiple spring method were used. The direct modeling method adopts tube-to-tube contact elements to represent the physical feature of a post-tension system. The multiple spring method uses virtual tendons attached to the real tendons using a number of rigid axial springs that freely rotate at the ends. Both modeling technologies provide accurate predictions. However, only the multiple spring method provides numerically stable and reliable responses with a consideration of concrete tension stiffening effects. Therefore, the multiple spring method turned out to be a generally applicable modeling technology for the unbonded post-tension system. Comparisons were made for the analytical and experimental results for the verification of the selected method, and parameter studies were carried out to confirm the appropriateness of the modeling assumptions and parameters adopted in the analysis.

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

Design and Construction of Flat Slab using Unbonded Post-tension System (비부착 포스트텐션 플랫 슬래브의 설계와 시공)

  • Chung, Kwang-Ryang;Park, Jung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.91-96
    • /
    • 2011
  • The flat slab is well-known as a structural system to reduce the story height, so it is broadly used for recent building. However, the normal RC flat slab is not appropriate for the long span, and the quantity of reinforcement bar and concrete is raised. Recently, the post-tensioning system has been introduced and used widely as an alternative method. Nevertheless, in Korea, it is not used broadly due to lack of the understanding and field experience. Especially, the post-tensioning system is hesitated to use due to uncertainty of construction ability and economics. This paper will introduce applicability to site and economics of unbonded post-tensioning system through construction examples.

  • PDF

An Experimental Study on Flexural Strength of SC Composite Beams Enforced by Unbonded Post Tension (비부착 포스트텐션 SC합성보의 휨내력에 관한 실험적 연구)

  • Kim, Heui Cheol;Ahn, Hyung Joon;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • This study aims to suggest an appropriate flexural reinforcement technique by evaluating the reinforcement capacity of specimens that underwent flexural reinforcement according to the post-tension method with the anchoring position of an unbonded tension member on the conventional SC composite beam and the applied tension level as variables. For the experiment, up to a predetermined yield load was applied to each type of specimen and then, unbounded post-tensioning was additionally conducted to examine its reinforcement capacity. The analysis of the said experiment showed that the post-reinforced SC composite beam was characterized by significantly improved yield stress and initial stiffness, compared with the pre-reinforced one and the experimental measurements/theoretical values of maximum stress ranged from 0.95 to 1.13 following reinforcement. There was little or no change depending on the maximum stress and tension in the specimen (D160, Class 240) whose neutral axis and upper part had anchoring devices mounted prior to reinforcement. Rather, the ductility decreased with the increasing tension. On the contrary, in the case of the other specimen (Class D120) whose neutral axis had anchoring devices mounted after reinforcement, both the maximum stress and ductility increased with increasing tension, which indicates that the latter tension reinforcement was reasonably appropriate and effective for the neutral axis reinforcement.

Flexural strength of prestressed concrete members with unbonded tendons

  • Lee, Deuck Hang;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.675-696
    • /
    • 2011
  • It is difficult to accurately predict the flexural strength of prestressed members with unbonded tendons, unlike that of prestressed members with bonded tendons, due to the unbonded behavior between concrete and tendon. While there have been many studies on this subject, the flexural strength of prestressed members with unbonded tendons is still not well understood, and different standards in various countries often result in different estimation results for identical members. Therefore, this paper aimed to observe existing approaches and to propose an improved model for the ultimate strength of prestressed members with unbonded tendons. Additionally, a large number of tests results on flexural strength of prestressed members with unbonded tendons were collected from previous studies, which entered into a database to verify the accuracy of the proposed model. The proposed model, compared to existing approaches, well estimated the flexural strength of prestressed members with unbonded tendons, adequately reflecting the effects of influencing factors such as the reinforced steel ratio, the loading patterns, and the concrete strength. The proposed model also provided a reasonably good estimation of the ultimate strength of over-reinforced members and high-strength concrete members.

Anchorage Zone Reinforcement for Unbonded Post-Tensioned Circular Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구를 적용한 포스트텐션 정착 구역의 보강)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2018
  • In the post-tensioned concrete member, additional reinforcement is required to prevent failure in the anchorage zone. In this study, the details of reinforcement suitable for the anchorage zone of the post-tensioned concrete member using circular anchorage was proposed based on the experimental results. The tests were conducted with the compressive strength of concrete and reinforcement types as variables. The experimental results indicated that the additional reinforcement for the anchorage zone is required when the compressive strength of concrete is less than 17.5 MPa. U-shaped reinforcement shows most effective performance in terms of maximum strength and cracks patterns.

Flexural tests on two-span unbonded post-tensioned lightweight concrete beams

  • Yang, Keun-Hyeok;Lee, Kyung-Ho;Yoon, Hyun-Sub
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • The objective of the present study is to examine the flexural behavior of two-span post-tensioned lightweight aggregate concrete (LWAC) beams using unbonded tendons and the reliability of the design provisions of ACI 318-14 for such beams. The parameters investigated were the effective prestress and loading type, including the symmetrical top one-point, two third-point, and analogous uniform loading systems. The unbonded prestressing three-wire strands were arranged with a harped profile of variable eccentricity. The total length of the beam, measured between both strand anchorages, was 11000 mm. The test results were compared with those compiled from simply supported LWAC one-way members, wherever possible. The ultimate load capacity of the present beam specimens was evaluated by the collapse mechanism of the plasticity theorem and the nominal section moment strength calculated following the provision of the ACI 318-14. The test results showed that the two-span post-tensioned LWAC beams had lower stress increase (Δfps) in the unbonded tendons than the simply supported LWAC beams with a similar reinforcement index. The effect of the loading type on Δfps and displacement ductility was less significant for two-span beams than for the comparable simply supported beams. The design equations for Δfps and Δfps proposed by ACI 318-14 and Harajli are conservative for the present two-span post-tensioned LWAC beams, although the safety decreases for the two-span beam, compared to the ratios between experiments and predictions obtained from simply supported beams.

Flexural Response of Negative Moment Region of Hybrid Prestressed Precast Concrete (HPPC) System (하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Heo, InWook;Kim, Kang Su;Woo, Woon-Taek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.3-10
    • /
    • 2018
  • Hybrid Prestressed Precast Concrete System (HPPC system) is a newly developed frame system that can improve the performance of precast concrete (PC) joints by post-tensioning. In particular, the details proposed in this study can reduce the lifting weight of the PC members and eliminate problems caused by cracks in the joints that occur under service loads. This study performed an evaluation on the negative moment performance of full-scaled HPPC girders. The test specimens were cast with or without slabs, with bonded or unbonded tendons, and had different post-tensioned lengths in tensile section. The test results showed that the specimens with slabs had significantly higher stiffness and strength than those without slabs. There were no differences in the flexural behavior between those with bonded or unbonded tendons, and between those with short or long post-tensioned lengths in the negative moment region.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(3) (고장력 인장봉으로 보강된 RC 보의 휨 거동에 관한 실험적 연구(3))

  • Shin, Kyung-Jae;Kim, Yoon-Jung;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Unlike external bonded steel plate or carbon fiber, the external unbonded strengthening using hi-strength bar has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of nine laboratory tests on RC beams strengthened using the hi-tension bars are reported. Anchoring pin developed in former research is installed at the end of beam to connect the hish-tension bar to RC beam. The test results strengthened by hi-tension bars are compared with those of non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar, distance of stirrups and condition of supports. Test results show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, shear resisting effect of hi-strength bar can be confirmed in the specimens which have lack of stirrups.

An Experimental Study on the Performance of One-Way Slab Using Unbonded Post-Tensioned Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구의 일방향 슬래브 적용에 관한 실험적 연구)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • In this study, the static load test and the load transfer test were carried out to evaluate the structural performance of the circular anchorage proposed by the previous study. Specimens were fabricated according to KCI-PS101 and ETAG 013. As a result of the static load test, it was verified that the displacement of the wedge and the strand was kept constant when the tensile force of 80% of the nominal strength of the strand was applied. In the load transfer test, it was confirmed that all the specimens satisfied the stabilization formula of KCI-PS101 and ETAG 013. Post-tensioned one-way slab with circular anchorage were fabricated to evaluate the flexural behavior. All specimens exhibited the same flexural behavior and maximum load. However, the specimen with circular anchorage were advantageous than the rectangular anchorage one in terms of crack control of the anchorage zone.