• Title/Summary/Keyword: Unbiased Estimate

Search Result 93, Processing Time 0.019 seconds

Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

  • Laodim, Thawee;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.508-518
    • /
    • 2019
  • Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family

  • Eun-Ho Kim;Ho-Chan Kang;Cheol-Hyun Myung;Ji-Yeong Kim;Du-Won Sun;Doo-Ho Lee;Seung-Hwan Lee;Hyun-Tae Lim
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1327-1335
    • /
    • 2023
  • Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.

The hydrologic flux of SS, TN and TP in Nakdong River Basin (낙동강 유역 SS, TN, TP 수문학적 플럭스)

  • Lee, Ayeon;Choi, Daegyu;Kim, Tae-Woong;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.551-560
    • /
    • 2010
  • This study presents the export of constituent transport loads through a river system. The proposed constituent transport load estimating procedure can be operated with the on-going Korean TMDL monitoring system. This study firstly discusses the use of a hydrologic simulation model (TANK) to estimate stream-flow for the 40 sub-catchments. Model parameters are estimated from 8-days intervals flow data which has been monitored by NIER since 2004. Constituent transport loads are estimated with the 7-parameter log linear model whose parameters are estimated by the minimum variance unbiased estimator. Results from Nakdong river basin reveals that the proposed procedure provides satisfactory TN, TP and SS transport load estimates. As an application, a representative load duration curve is derived to represent the overall hydrologic flux of TN, TP and SS at Nakdong river basin.

Completeness Estimation of the Korean Medical Insurance Data in Childhood Asthma : Using Capture-Recapture Method (소아 천식을 통해서 본 의료보험 상병 자료의 완전성 추정 : Capture-Recapture 분석방법의 적용)

  • Ha, M.N.;Kwon, H.J.;Kang, D.H.;Cho, S.H.;Yoo, K.Y.;Joo, Y.S.;Sung, J.H.;Kang, J.W.;Kim, D.S.;Lee, S.I.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.2 s.57
    • /
    • pp.428-436
    • /
    • 1997
  • Objectives : The purpose of this paper is to estimate the completeness of the Korean Medical Insurance Data in childhood asthma. Methods : Capture-recapture method was used to estimate the prevalence of childhood asthma and case ascertainment rate(completeness) of Korean Medical Insurance Data using two source model, 'Korean Medical Insurance Committee Data (KMICD)' and 'Nationwide Study of Asthma and Allergies in Korean Children'. The asthma cases were restricted to those who were born from 1981 to 1989 and were identified by their Resident Register Number. Asthma cases in Korean Medical Insurance Data were defined as cases coded by ICD-9 493 and ICD-10 J45. In 'Nationwide Study of Asthma and Allergies in Korean Children', asthma cases were defined as the children who had been diagnosed asthma and had experienced symptoms of asthma during the past 12 months. The defined cases in two data sources were matched by 13 digits Resident Register Number. The numbers of matched patients in two data sources were 245 of 32,825 eligible total subjects. Chapman and Wittes' nearly unbiased estimation was used for capture-recapture analysis of two data sources. Results : Observed prevalence rate of childhood asthma was 5.3% and estimated prevalence rate by capture-recapture analysis was 11.6%. The highest prevalence rate was observed in 6-7 age group and the older the rate decreased. The completeness (the proportion of cases ascertained by KMICD to the total observed cases by two data sources) was 20.6%, and ranged form 10.8% to 28.8% by area. Conclusions : Invalid diagnosis of cases might overestimate the prevalence of child-hood asthma and might underestimate the completeness of Korean Medical Insurance Committee Data in this study.

  • PDF

Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle) (한우의 유전체 육종가의 정확도 추정)

  • Lee, Seung Soo;Lee, Seung Hwan;Choi, Tae Jeong;Choy, Yun Ho;Cho, Kwang Hyun;Choi, You Lim;Cho, Yong Min;Kim, Nae Soo;Lee, Jung Jae
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls.

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

EM Algorithm and Two Stage Model for Incomplete Data (불완전한 자료에 대한 보완기법(EM 알고리듬과 2단계(Two Stage) 모델))

  • 박경숙
    • Korea journal of population studies
    • /
    • v.21 no.1
    • /
    • pp.162-183
    • /
    • 1998
  • This study examines the sampling bias that may have resulted from the large number of missing observations. Despite well-designed and reliable sampling procedures, the observed sample values in DSFH(Demographic Survey on Changes in Family and Household Structure, Japan) included many missing observations. The head administerd survey method of DSFH resulted in a large number of missing observations regarding characteristics of elderly non-head parents and their children. In addition, the response probability of a particular item in DSFH significantly differs by characteristics of elderly parents and their children. Furthermore, missing observations of many items occurred simultaneously. This complex pattern of missing observations critically limits the ability to produce an unbiased analysis. First, the large number of missing observations is likely to cause a misleading estimate of the standard error. Even worse, the possible dependency of missing observations on their latent values is likely to produce biased estimates of covariates. Two models are employed to solve the possible inference biases. First, EM algorithm is used to infer the missing values based on the knowledge of the association between the observed values and other covariates. Second, a selection model was employed given the suspicion that the probability of missing observations of proximity depends on its unobserved outcome.

  • PDF

First-time estimation of HCHO column in major cities over Asia using multiple regression with satellite data (위성자료와 다중회귀분석법을 이용한 아시아 주요도시의 포름알데하이드 칼럼농도 추정연구)

  • Choi, Wonei;Hong, Hyunkee;Park, Junsung;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.523-530
    • /
    • 2015
  • A Multiple Regression Method (MRM) is used for the first time with Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate formaldehyde (HCHO) Vertical Column Density (VCD). For a 3.5-year period from January 2005 through July 2008, HCHO VCD estimation is investigated in cities over Asia in two categorized areas: (1) Major cities in Northeast Asia (Beijing, Seoul, and Tokyo), (2) Major cities in Southeast Asia (New Delhi, Dhaka, and Bangkok). In the Major cities in Northeast Asia, there are good agreements between HCHO estimated by the multiple linear regression method ($HCHO_{MRM}$) and HCHO measured by OMI ($HCHO_{OMI}$) (0.78 < $R^2$ < 0.82). However, in Major cities in Southeast Asia, there were poor agreements between $HCHO_{OMI}$ and $HCHO_{MRM}$ (0.24 < $R^2$ < 0.39). In addition, an unbiased assessment of the MRM performance using modeling and validation groups shows that the performance of the MRM based on separate modeling and validation groups is comparable to that using all the data for deriving Multiple Regression Equations (MREs). This study demonstrates that MRM can be an alternative tool for HCHO estimation in certain areas over Asia.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Design of Digital Phase-locked Loop based on Two-layer Frobenius norm Finite Impulse Response Filter (2계층 Frobenius norm 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • Sin Kim;Sung Shin;Sung-Hyun You;Hyun-Duck Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • The digital phase-locked loop(DPLL) is one of the circuits composed of a digital detector, digital loop filter, voltage-controlled oscillator, and divider as a fundamental circuit, widely used in many fields such as electrical and circuit fields. A state estimator using various mathematical algorithms is used to improve the performance of a digital phase-locked loop. Traditional state estimators have utilized Kalman filters of infinite impulse response state estimators, and digital phase-locked loops based on infinite impulse response state estimators can cause rapid performance degradation in unexpected situations such as inaccuracies in initial values, model errors, and various disturbances. In this paper, we propose a two-layer Frobenius norm-based finite impulse state estimator to design a new digital phase-locked loop. The proposed state estimator uses the estimated state of the first layer to estimate the state of the first layer with the accumulated measurement value. To verify the robust performance of the new finite impulse response state estimator-based digital phase locked-loop, simulations were performed by comparing it with the infinite impulse response state estimator in situations where noise covariance information was inaccurate.