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Comparison on genomic prediction using pedigree BLUP and 
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Objective: When evaluating individuals with the same parent and no phenotype by pedigree 
best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and 
select individuals because they have the same value in pedigree BLUP (PBLUP). However, 
single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the 
individual by adding genotype, is more accurate than the existing method.
Methods: The breeding value and accuracy were estimated with pedigree BLUP and 
ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the 
same parent among siblings produced by fertilized egg transplantation. A total of 14,225 
Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. 
PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference 
populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix 
by integrating the pedigree and genotype of the test and reference populations. 
Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the 
accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals 
without phenotype, since the value of EBV is estimated based on expected values of alleles 
passed down from common ancestors. It does not take Mendelian sampling into con-
sideration, so the EBV of all individuals within the same family is estimated to be the same 
value. However, GEBV makes estimating true kinship coefficient based on different genotypes 
of individuals possible, so GEBV that corresponds to each individual is estimated rather 
than a uniform GEBV for each individual. 
Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of 
having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship 
coefficient corresponding to each individual becomes possible, allowing for more accurate 
estimation of breeding value.
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INTRODUCTION

Genetic improvement of domestic animals has developed from a method where animals 
with good records in phenotype are selected into genetics evaluation methods that utilize 
all information on the phenotype and pedigree that a certain animal possesses. Best linear 
unbiased prediction (BLUP) which calculate estimated breeding value (EBV) by correcting 
the environmental elements that affect the pedigree and phenotype of offspring and siblings 
of individual animals in question has had a great impact on genetic improvement of livestock 
[1]. Korean beef (Hanwoo) an important Korean livestock product has been successfully 
genetically improved by applying such methods to bulls, but it has been difficult to evaluate 
the ability and genetically improve cows due to the small number of offspring as they can 
only give birth once a year through natural breeding or artificial insemination. To solve 
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this problem of information insufficiency, the method of 
ovum pick up has been introduced to maximize the pro-
ductivity of cows. This technique uses ultrasound to collect 
immature ova from the ovaries of living cows, mature those 
ova outside the animals’ body a process called in vitro matu-
ration and then form fertilized eggs using sperm. In this 
technique, 11.9 ova can be collected and 3.6 fertilized eggs 
can be produced annually from one cow, allowing livestock 
geneticists to secure large amounts of phenotypic informa-
tion on descendant animals in a short period of time [2]. 
However, in the case of cows bred through embryo transfer, 
the probability of them having full sibs from the same parents 
is high. When genetic evaluation is performed through pedi-
gree, test individuals, whose phenotype is not known until 
slaughter, Mendelian sampling effect is not considered at all. 
As a result, the probability of them having common genes 
due to identical by descent, causing a problem in that each 
individual in the family are estimated to have the same 
EBV [3,4]. Also, Sullivan [5] reported that the evaluation 
of EBV without taking Mendelian sampling into consider-
ation results in biased information, and if this problem 
continues, the effectiveness of genetic improvement de-
creases and the frequency of unmasked deleterious genetic 
mutations will increase. 
 Genome selection, which has been widely used in the 
livestock industry, recently has had a positive influence on 
animal breeding through its advantages such as estimation 
with higher accuracy than traditional breeding methods [6]. 
Genome selection is a method where genomic EBV (GEBV) 
is estimated by using the phenotype and genotype of single 
nucleotide polymorphism (SNP) densely distributed on 
chromosomes. It can estimate with much higher accuracy 
than with pedigrees by estimating a kinship coefficient that 
is closer to the real value of the individual, using the ratio of 
genetic mutations and gene effects between different indi-
viduals [4,7]. By applying this genome selection method to 
full-sib groups through embryo transfer, estimation of breed-
ing value suitable to each individual becomes possible, so it 
is thought that individual selection based on higher accuracy 
than before can be carried out. As such, this study estimates 
breeding value and accuracy with pedigree BLUP (PBLUP) 
and single step genomic BLUP (ssGBLUP) using pedigree 
and genotype of full-sib family by embryo transfer, and the 
results have been compared.

MATERIALS AND METHODS

All animal care and treatment procedures were conducted 
in strict accordance with the Animal Ethics Committee of 
Gyeongsang National University, Korea, and performed in 
accordance with the Committee's guidelines and regulations 
(Approval No.: GNU-220825-A0094).

Animal population and phenotype
The test population used in this study consisted of a total 
of 467 Hanwoo cattle from 18 families, provided with indi-
vidual identification numbers of Hanwoo produced by 
embryo transfer from GAST, Gyeongsang national universi-
ty. Among the families with the same parents, 408 Hanwoo 
cattles from 16 families were finally selected by excluding 
less than 5 slaughtered animals and those with abnormal 
carcass grades. The reference population used for the analysis 
was provided with pedigree, genotype, and phenotype from 
the BioGreen 21 program (Molecular breeding Program) 
of National Institute of Animal Science (NIAS), Rural De-
velopment Administration (RDA), South Korea. Through 
the normality analysis, individuals with a slaughter age of 
less than 26 months or more than 36 months and individuals 
with abnormalities in carcass grade were found and removed. 
Finally, 14,225 head were used for the analysis.
 The phenotype shared by the two reference population 
involved following the Livestock Grade Determination Stan-
dard Detail #2014-4 posted by the Ministry of Agriculture, 
Food and Rural Affairs (MAFRA), with carcass traits mea-
sured 24 hour of refrigeration after the butchery. Carcass 
weight (CWT) measured as the sum of left and right frozen 
body weights, while eye muscle area (EMA) was measured 
by cutting the area between the left and right thoracic verte-
brae and first lumbar perpendicular to the vertebra and 
measuring the area of the last thoracic vertebrae. Back-fat 
thickness (BFT) was measured by the area that is 2/3 inwards 
towards the belly along with the EMA. And marbling score 
(MS) was visually measured by comparing the degree of fat 
deposit in the muscles of the EMA measurement area with 
the standard table (1 = devoid and 9 = abundant).

Animal pedigree
To collect the pedigree to be used in BLUP, the individual 
identification numbers were searched for pedigree at Korea 
Animal Improvement Association (KAIA) to establish a 
pedigree tree through whole backtracking, and renumbering 
took place to arrange into Animal, Sire and Dam. After that, 
outliers were corrected using the R Software [8] suitable for 
large-scale information processing and was combined with 
the acquired pedigree tree of test and reference population. 
The constructed pedigree tree was 761 Hanwoo cattle in the 
test population and 58,669 Hanwoo cattle in the reference 
population. By combining the two pedigree trees, duplicated 
individuals were removed, and a total 59,141 Hanwoo cattle 
were finally used for analysis.

Genotype, quality control and imputation
To collect the genotype to be used for ssGBLUP, high purity 
genomic DNA was acquired by extracting it from the hair 
and blood, then genotype was collected using Hanwoo 50K 
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SNP BeadChip Ver.1 and Bovine 50K SNP BeadChip Ver. 2, 
Ver. 3 (Illumina Inc., San Diego, CA, USA). The acquired 
large-scale genotype was converted to a form suitable for 
PLINK1.9 [9] using GenomoStudio 2.0 (Illumina Inc., San 
Diego, CA, USA), and the missing genotypes underwent 
imputation of reference population genotype using Eagle 
Ver. 2.4.1 [10] and Minimac3 Ver. 2.0.1 [11]. Afterward, the 
genotype of test and reference population were combined 
into common SNP information, and for Quality Control, 
PLINK1.9 [9] was used to select SNP with less than 1% minor 
allele frequency, 10% or more missing genotype, and less than 
10–6 Hardy-Weinberg equilibrium, finally using a total of 
41,564 SNP markers.

Estimated of estimated breeding value by pedigree best 
linear unbiased prediction 
The EBV, prediction error variance (PEV) and genetic parame-
ters for each trait were estimated by applying the numerator 
relationship matrix (NRM) constructed with pedigree in 
the BLUPF90 program [12]. For the fixed effect, the birth 
year, birth month, age at slaughter, slaughter place were 
used, and the mixed model equation is as follows:

 Y = Xβ+Zu+e
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 Here, H is relational matrix based on pedigree and geno-
type; A is NRM constructed using pedigree, G is GRM 
constructed using genotype, α is the additive genetic variance 
of the individual, with R is the variation matrix on residual 
effect. Especially, G was established using the following rela-
tion formula [13].
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the additive genetic variance. PEV is the error deviation range 
of the EBV and GEBV estimated for each individual. It is the 
diagonal element of the inverse left side of the mixed model 
equation of each analysis method, while can be earned using 
REMLF90 of the BLUPF90 package.

RESULTS

Basic statistical analysis of the test and reference 
population
The phenotype of the test and reference population used for 
the analysis are CWT, EMA, BFT and MS, and the basic 
statistics are shown in Table 1. The average and standard 
deviation of each trait were 475.6±70.8 kg, 102.4±16.8 cm2, 
12.7±4.9 mm, and 6.5±2.0 point in test population, 441.1±47.6 
kg, 95.8±11.4 cm2, 13.9±4.2 mm, 5.9±1.8 Point in the refer-
ence population. The average value of all traits was high in 
the test population. Looking at the coefficient of variation 
of the two populations, BFT and MS were significantly higher, 
indicating that the two traits had a larger deviation than the 
other two traits.
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Comparison of estimated results with PBLUP and 
ssGBLUP
The estimated genetic parameters according to the analysis 
method was shown in Table 2 with values estimated by genetic 
variance (
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MS, the heritability estimated by PBLUP was 0.29±0.03, 
0.29±0.03, 0.23±0.03, and 0.39±0.04, and the heritability es-
timated by ssGBLUP was 0.43±0.01, 0.39±0.01, 0.36±0.01, 
and 0.47±0.01, indicating the ssGBLUP was high. The formula 
for calculating heritability is 

mm, 5.9±1.8 Point in the reference population. The average value of all traits was high in the test population. 190 

Looking at the coefficient of variation of the two populations, BFT and MS were significantly higher, indicating 191 

that the two traits had a larger deviation than the other two traits. 192 

 193 

Comparison of estimated results with PBLUP and ssGBLUP 194 

The estimated genetic parameters according to the analysis method was shown in Table 2 with values estimated 195 

by genetic variance ( 𝜎𝜎�� �, residual variance ( 𝜎𝜎�� ), phenotypic variance ( 𝜎𝜎�� ), heritability and standard error 196 

(SE), accuracy and standard deviation. In the order of CWT, EMA, BFT and MS, the heritability estimated by 197 

PBLUP was 0.29±0.03, 0.29±0.03, 0.23±0.03, and 0.39±0.04, and the heritability estimated by ssGBLUP was 198 

0.43±0.01, 0.39±0.01, 0.36±0.01, and 0.47±0.01, indicating the ssGBLUP was high. The formula for calculating 199 

heritability is ℎ� = 𝜎𝜎��/(𝜎𝜎��+𝜎𝜎�� = 𝜎𝜎��) . The phenotypic variance estimated by the two analysis methods is 200 

similar, but the difference is due to the relatively high genetic variance estimated by ssGBLUP. The SE of 201 

heritability estimated in each analysis method were 0.03, 0.03, 0.03, and 0.04 in PBLUP, and ssGBLUP was 202 

0.01 in all traits, which was lower than the SE estimated in PBLUP. Looking at the estimated accuracy, the 203 

average accuracy of PBLUP was 0.53±0.02, 0.53±0.02, 0.52±0.02, and 0.54±0.02, and the accuracy of 204 

ssGBLUP was 0.73±0.04, 0.71±0.04, 0.70±0.04, and 0.74±0.04 in the order of CWT, EMA, BFT, and MS. The 205 

difference in the estimated accuracy according to the analysis method was 0.18 to 0.20, and the accuracy 206 

estimated by ssGBLUP was high.  207 

CWT, EMA, BFT, and MS used in the analysis were multiple traits of animal model according to the analysis 208 

method, and the genetic and phenotypic correlation between each trait were estimated and shown in Table 3. As 209 

result, the genetic correlation range was 0.05±0.09 to 0.58±0.06 in PBLUP and 0.13±0.03 to 0.50±0.02 in 210 

ssGBLUP, and the phenotypic correlation range was 0.12±0.01 to 0.50±0.01 in PBLUP and 0.17±0.01 to 211 

0.51±0.01 in ssGBLUP. The values of genetic and phenotypic correlations estimated by the two analysis 212 

methods were similar. The genetic correlations of EMA and BFT were negatively correlated with –0.05 in 213 

PBLUP and –0.13 in ssGBLUP, but other traits had positive correlations. In addition, the SE of phenotypic 214 

correlations estimated in each analysis method were all 0.01, showing the same value, but the SE of genetic 215 

correlations were 0.06 to 0.09 in PBLUP and 0.02 to 0.03 in ssGBLUP, which was lower than the SE estimated 216 

. The 
phenotypic variance estimated by the two analysis methods 
is similar, but the difference is due to the relatively high ge-
netic variance estimated by ssGBLUP. The SE of heritability 
estimated in each analysis method were 0.03, 0.03, 0.03, and 
0.04 in PBLUP, and ssGBLUP was 0.01 in all traits, which 
was lower than the SE estimated in PBLUP. Looking at the 
estimated accuracy, the average accuracy of PBLUP was 0.53 
±0.02, 0.53±0.02, 0.52±0.02, and 0.54±0.02, and the accuracy 
of ssGBLUP was 0.73±0.04, 0.71±0.04, 0.70±0.04, and 0.74 
±0.04 in the order of CWT, EMA, BFT, and MS. The difference 
in the estimated accuracy according to the analysis method 
was 0.18 to 0.20, and the accuracy estimated by ssGBLUP 

was high. 
 CWT, EMA, BFT, and MS used in the analysis were mul-
tiple traits of animal model according to the analysis method, 
and the genetic and phenotypic correlation between each 
trait were estimated and shown in Table 3. As result, the ge-
netic correlation range was 0.05±0.09 to 0.58±0.06 in PBLUP 
and 0.13±0.03 to 0.50±0.02 in ssGBLUP, and the phenotypic 
correlation range was 0.12±0.01 to 0.50±0.01 in PBLUP and 
0.17±0.01 to 0.51±0.01 in ssGBLUP. The values of genetic 
and phenotypic correlations estimated by the two analysis 
methods were similar. The genetic correlations of EMA and 
BFT were negatively correlated with –0.05 in PBLUP and 
–0.13 in ssGBLUP, but other traits had positive correlations. 
In addition, the SE of phenotypic correlations estimated in 
each analysis method were all 0.01, showing the same value, 
but the SE of genetic correlations were 0.06 to 0.09 in PBLUP 
and 0.02 to 0.03 in ssGBLUP, which was lower than the SE 
estimated in PBLUP. 
 The EBV and GEBV, average value and standard deviation 
of carcass grade estimated according to analysis method 
have been categorized by family in Table 4. Families that 
had a large gap between EBV and GEBV among the CWT 
included number 11, which had a weight of 22.11 kg, number 
8, which had a EMA of 5.06 cm2, number 9, which had a 

Table 1. Basic statistics of test and reference population used in the analysis

Type No. animal Trait Mean SD Min Max CV (%)

Test population 408 CWT (kg) 475.6 70.8 166 655 14.9
EMA (cm2) 102.4 16.8 30 143 16.4
BFT (mm) 12.7 4.9 1 31 38.5
MS (point) 6.5 2.0 1 9 30.5

Reference population 14,225 CWT (kg) 441.1 47.6 299 584 10.8
EMA (cm2) 95.8 11.4 62 129 11.9
BFT (mm) 13.9 4.2 1 26 30.6
MS (point) 5.9 1.8 1 9 30.9

SD, standard deviation; CV, coefficient of variation; CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score.

Table 2. Estimated genetic parameters and heritability according to the analysis method

Method Parameter CWT EMA BFT MS

PBLUP

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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603.79 34.29 4.07 1.25

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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1,455.60 85.70 13.74 1.98

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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2,059.39 119.99 17.82 3.23
h2 ± SE 0.29 ± 0.03 0.29 ± 0.03 0.23 ± 0.03 0.39 ± 0.04

Accuracy ± SD 0.53 ± 0.02 0.53 ± 0.02 0.52 ± 0.02 0.54 ± 0.02
ssGBLUP

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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859.69 43.99 6.39 1.51

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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1,143.70 74.43 11.53 1.70

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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2,003.39 118.42 17.92 3.21
h2 ± SE 0.43 ± 0.01 0.37 ± 0.01 0.36 ± 0.01 0.47 ± 0.01

Accuracy ± SD 0.73 ± 0.04 0.71 ± 0.04 0.70 ± 0.04 0.74 ± 0.04

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased prediction using pedigree; ssGBLUP, 
best linear unbiased prediction using pedigree and genotype; 

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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, additive genetic variance; 

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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, residual variance; 

Table 2. Estimated genetic parameters and heritability according to the analysis method 435 

Method Parameter CWT EMA BFT MS 

PBLUP 𝜎𝜎�� 603.79 34.29 4.07 1.25 

𝜎𝜎�� 1,455.60 85.70 13.74 1.98 

𝜎𝜎�� 2,059.39 119.99 17.82 3.23 

ℎ� � �� 0.29±0.03 0.29±0.03 0.23±0.03 0.39±0.04 

Accuracy±SD 0.53±0.02 0.53±0.02 0.52±0.02 0.54±0.02 

ssGBLUP 𝜎𝜎�� 859.69 43.99 6.39 1.51 

𝜎𝜎�� 1,143.70 74.43 11.53 1.70 

𝜎𝜎�� 2,003.39 118.42 17.92 3.21 

ℎ� � �� 0.43±0.01 0.37±0.01 0.36±0.01 0.47±0.01 

Accuracy±SD 0.73±0.04 0.71±0.04 0.70±0.04 0.74±0.04 

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased 436 

prediction using pedigree; ssGBLUP, best linear unbiased prediction using pedigree and genotype; 𝜎𝜎��, additive genetic 437 

variance; 𝜎𝜎��, residual variance; 𝜎𝜎��, phenotypic variance; ℎ� � ��, heritability and standard error; SD, standard deviation. 438 
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, phenotypic variance; h2 ±SE, heritability 
and standard error; SD, standard deviation.
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Table 3. Genetic correlation and phenotypic correlation according to analysis method1)

Method Trait CWT EMA BFT MS
PBLUP CWT - 0.50 ± 0.07 0.23 ± 0.09 0.29 ± 0.08

EMA 0.50 ± 0.01 - –0.05 ± 0.09 0.58 ± 0.06
BFT 0.40 ± 0.01 0.12 ± 0.01 - 0.11 ± 0.09
MS 0.14 ± 0.01 0.38 ± 0.01 0.12 ± 0.01 -

ssGBLUP CWT - 0.47 ± 0.02 0.22 ± 0.03 0.16 ± 0.03
EMA 0.51 ± 0.01 - –0.13 ± 0.03 0.50 ± 0.02
BFT 0.47 ± 0.01 0.20 ± 0.01 - 0.03 ± 0.03
MS 0.21 ± 0.01 0.40 ± 0.01 0.17 ± 0.01 -

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; PBLUP, best linear unbiased prediction using pedigree; ssGBLUP, 
best linear unbiased prediction using pedigree and genotype.
1) Genetic correlation (above diagonal) and phenotypic correlation (below diagonal) by trait according to the analysis method. And correlation values were 
shown as coefficients and standard errors.

Table 4. Comparison of GEBV and EBV, phenotype according to population1)

Pop Parents
CWT EMA

EBV (kg) AccEBV GEBV (kg) AccGEBV
Phenotype 

(kg)
EBV 

(cm2) AccEBV
GEBV 
(cm2) AccGEBV

Phenotype 
(cm2)

1 Sire 1 X Dam 1 29.8 0.5 22.9 ± 24.7 0.7 439.9 ± 78.8 7.6 0.5 3.4 ± 3.5 0.7 96.3 ± 17.2
2 Sire 2 X Dam 2 16.4 0.6 1.1 ± 17.9 0.7 433.7 ± 80.8 8.7 0.6 4 ± 3.5 0.7 94.8 ± 24.7
3 Sire 1 X Dam 3 32.0 0.5 33.7 ± 16.8 0.7 498 ± 53.3 6.9 0.5 6.6 ± 3.4 0.7 115.8 ± 11.6
4 Sire 3 X Dam 4 48.1 0.5 35.5 ± 12 0.7 510.7 ± 40.4 9.5 0.5 7 ± 3.1 0.7 101.4 ± 12.3
5 Sire 3 X Dam 5 38.7 0.5 44.4 ± 15.5 0.8 529.1 ± 60.1 8.6 0.5 6.5 ± 3.1 0.7 109.6 ± 12.9
6 Sire 4 X Dam 6 14.3 0.5 –4 ± 14 0.7 484.5 ± 60.7 5.5 0.5 2.8 ± 4.2 0.7 98.5 ± 10.8
7 Sire 2 X Dam 7 5.4 0.5 3 ± 19.4 0.7 475 ± 41.2 6.2 0.5 5.5 ± 3.4 0.7 100.8 ± 9.7
8 Sire 4 X Dam 1 3.2 0.5 –8.8 ± 21.4 0.7 437.3 ± 68.9 2.3 0.5 -2.7 ± 3.7 0.7 95.8 ± 13.3
9 Sire 3 X Dam 8 36.6 0.5 38.8 ± 15.7 0.7 490.8 ± 41 10.3 0.5 12.4 ± 2.8 0.7 116.5 ± 11.2
10 Sire 5 X Dam 9 29.6 0.5 8.8 ± 17.7 0.7 465.1 ± 55.8 8.7 0.5 4.2 ± 3.1 0.7 100 ± 14.4
11 Sire 3 X Dam 10 48.8 0.5 70.9 ± 19.3 0.7 565.6 ± 48.5 10.9 0.5 13.9 ± 2.9 0.7 119.3 ± 14.6
12 Sire 3 X Dam 11 37.4 0.6 20.3 ± 10.3 0.7 463 ± 52.3 8.6 0.5 4 ± 3.1 0.7 95.9 ± 9.5
13 Sire 5 X Dam 12 20.3 0.5 12.8 ± 23.6 0.7 442.9 ± 46.5 7.9 0.5 6.2 ± 4.7 0.7 100.6 ± 12.6
14 Sire 3 X Dam 9 47.1 0.5 33.4 ± 18.8 0.7 489.7 ± 41.4 9.9 0.5 6.2 ± 2.4 0.7 104.1 ± 7.2
15 Sire 3 X Dam 13 42.5 0.5 44.6 ± 12.9 0.7 521.9 ± 42.2 9.2 0.5 12 ± 2.9 0.7 106 ± 11
16 Sire 4 X Dam 14 8.9 0.5 –8.1 ± 22.1 0.7 468 ± 22.4 3.3 0.5 0.5 ± 2 0.7 95.2 ± 7.6
Mean 28.4 ± 13.8 0.5 ± 0.0 21.5 ± 27.4 0.7 ± 0.0 475.6 ± 70.8 7.9 ± 2 0.5 ± 0.0 5.5 ± 5 0.7 ± 0.0 102.4 ± 16.8

BFT MS

EBV (mm) AccEBV GEBV (mm) AccGEBV
Phenotype 

(mm)
EBV 

(point) AccEBV
GEBV 
(point) AccGEBV

Phenotype 
(point)

1 Sire 1 X Dam 1 –0.3 0.5 –1.3 ± 0.9 0.7 11.4 ± 3.7 1.2 0.5 1.2 ± 0.6 0.7 6.6 ± 2.2
2 Sire 2 X Dam 2 –0.8 0.5 0.1 ± 1.2 0.7 13.3 ± 5.5 1.0 0.6 0.2 ± 0.7 0.7 5.4 ± 2
3 Sire 1 X Dam 3 –0.2 0.5 –0.1 ± 1.3 0.7 13.4 ± 3.9 0.9 0.5 1.2 ± 0.5 0.7 8.1 ± 1.3
4 Sire 3 X Dam 4 –0.3 0.5 –1.1 ± 1 0.7 11.7 ± 3 1.3 0.5 1.3 ± 0.6 0.7 7.2 ± 1.5
5 Sire 3 X Dam 5 –0.8 0.5 0.1 ± 1.3 0.7 12 ± 4.7 1.1 0.5 1 ± 0.6 0.8 6 ± 1.8
6 Sire 4 X Dam 6 –0.4 0.5 –0.8 ± 1.2 0.7 14.9 ± 5.5 1.4 0.6 1.1 ± 0.6 0.7 6.7 ± 1.8
7 Sire 2 X Dam 7 –0.9 0.5 –1.6 ± 0.8 0.7 13.8 ± 5.1 0.5 0.5 –0.3 ± 0.5 0.7 4.6 ± 1.5
8 Sire 4 X Dam 1 0.0 0.5 –0.1 ± 1.3 0.7 16.3 ± 4.2 1.2 0.5 1.1 ± 0.7 0.7 6.8 ± 1.3
9 Sire 3 X Dam 8 –1.4 0.5 –3.2 ± 1 0.7 7.1 ± 2.8 1.4 0.5 1.4 ± 0.6 0.8 7.9 ± 1
10 Sire 5 X Dam 9 –0.8 0.5 –0.7 ± 1.2 0.7 15.9 ± 5.2 0.7 0.5 0.2 ± 0.7 0.7 5.5 ± 1.8
11 Sire 3 X Dam 10 –1.1 0.5 –1.6 ± 1.1 0.7 11.8 ± 3 1.1 0.5 1.3 ± 0.5 0.8 7.3 ± 1.1
12 Sire 3 X Dam 11 –1.1 0.5 –1 ± 1.2 0.7 10.6 ± 3.5 1.0 0.6 1 ± 0.7 0.8 6.3 ± 2.3
13 Sire 5 X Dam 12 0.1 0.5 –0.2 ± 1 0.7 13.5 ± 6.5 1.0 0.5 0.6 ± 0.6 0.7 6.3 ± 2.1
14 Sire 3 X Dam 9 –1.5 0.5 –0.7 ± 1 0.7 14.8 ± 4.1 1.1 0.5 0.5 ± 0.5 0.7 5.9 ± 1.6
15 Sire 3 X Dam 13 –0.6 0.5 –1 ± 0.8 0.7 12.9 ± 4.4 1.0 0.5 1.9 ± 0.6 0.8 7.9 ± 1.1
16 Sire 4 X Dam 14 –0.3 0.5 –0.9 ± 0.5 0.7 11.4 ± 1 0.9 0.5 0.3 ± 1 0.7 6.2 ± 0.4
Mean –0.6 ± 0.4 0.5 ± 0.0 –0.9 ± 1.4 0.7 ± 0.0 12.7 ± 4.9 1.1 ± 0.2 0.5 ± 0.0 0.9 ± 0.8 0.7 ± 0.0 6.5 ± 2

CWT, carcass weight; EMA, eye muscle area; BFT, back fat thickness; MS, marbling score; EBV, estimated breeding value; AccEBV, accuracy of EBV; GEBV, 
genomic EBV; AccGEBV, accuracy of GEBV.
1) Shows the mean and standard deviation of breeding value and accuracy by population.
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BFT of 1.88 mm, number 17, which had a MS of 1.67 point, 
and other families had different estimated value. The dif-
ference between EBVs obtained from both analysis methods 
was that standard deviation of EBV did not exist, but this 
alone is not enough to explain the various phenotype as all 
individuals within the same family are estimated to have 
the same EBV. On the other hand, standard deviation exists 
for GEBV, so it can be assumed that different GEBV have 
been estimated for each individual. If the carcass grade and 
GEBV for each parent combination is looked into, the family 
with the best grade in CWT and EMA is number 11. The 
family with the best grade for BFT is number 9. And MS is 
number 15 for GEBV, and number 3 for overall highest 
carcass grade MS. Families with high scores in all aspects 
all used Sire 3, family numbers 1 and 8 had half-sib rela-
tionships by Donor for Dam 1, and family numbers 10 and 
14 for Dam 9, and the GEBV and carcass grades of both 
populations turned out to be similar. On the other hand, 
family numbers 2 and 7 had half-sib relationships from 
their father in Sire 2, and they had major differences in 
carcass grade of CWT and EMA, and in Sire 1, families 
number 1 and 3 had different carcass grades in all categories 
apart from BFT. Through these data, it was found that there 
were differences in carcass grade by combination of each 

father and mother.
 The test population is divided up into low relatedness 
population (RT1), a half-sib family where only one side of 
the parents is the same (RT2), and a full-sib family that has 
the same parents (RT3) and the relationship graph used to 
analyze the kinship coefficient distribution of each population 
is shown as a boxplot and histogram in Figure 1A. It shows 
each population according to analysis method in boxplots, 
the kinship coefficient average was 0.0536, 0.2645, and 0.5083 
for RT1, RT2, and RT3, respectfully, and for ssGBLUP, the 
numbers were 0.0191, 0.2048, 0.3803, respectfully, showing 
that the kinship coefficient numbers for the PBLUP method 
was higher. However, if the range of estimated kinship coeffi-
cient is examined, the kinship coefficient range for PBLUP 
was 0.0045 to 0.2707, 0.2538 to 0.2860, and 0.5005 to 0.5225, 
–0.0628 to 0.5527, –0.0494 to 0.5711, –0.0526 to 0.6684 for 
ssGBLUP, showing that the kinship coefficient range for 
ssGBLUP was much wider. There are a lot of off-diagonal el-
ements that diverged from the boxplot distribution range for 
ssGBLUP, which is due to the elements being far from the 
average and having a low frequency, and this tendency ap-
peared in Figure 1B, which shows the frequency of blood 
relationship used in ssGBLUP. The total range of blood rela-
tionship used in ssGLBUP is –0.0628 to 0.6684, which is 

Figure 1. Estimated kinship coefficient using the pedigree and genotype of the test population. (A) is a boxplot showing the kinship relationship 
matrix diagram used for PBLUP and ssGBLUP by dividing it into low relatedness population, half-sib population, full-sib population. (B) shows the 
kinship coefficient matrix diagram used for ssGBLUP by frequency by population (RT1, Low relatedness population; RT2, Half-sib population; RT3, 
Full-sib population).
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very wide. RT1, RT2, and RT3 are distributed widely, but 
RT1 is skewed to the average value, and RT2 and RT3 show 
a normal distribution curve with a gentle slope. All popula-
tions show an off-diagonal element with negative value around 
the minimum value, which is caused during the process of 
estimating kinship coefficient using the SNP marker’s minor 
allele frequency (MAF) value, and it does not pose a major 
problem when estimating the genome breeding value with 
the negative value set up as mixed model equation [14].

DISCUSSION

The importance of basic statistics
In order to increase the effectiveness of livestock genetic im-
provement, it is important to form and select population s 
with good carcass grades. Lee et al [15] collected carcass 
grade data of 12,000 cows from a reference population to es-
timate the GEBV of cows raised in the Gyeongi-do Province 
area, and results showed that CWT, EMA, BFT, and MS were 
441.21±51.53 kg, 95.92±12.10 cm2, 14.41±4.87 mm, 6.10± 
1.84 point, respectfully. Lee et al [16] collected carcass grade 
data of steers raised in Gangwon-do Province farms, and 
data of CWT, EMA, BFT, and MS were 431.77±51.43 kg, 
91.22±10.75 cm2, 13.30±5.14 mm, 5.66±1.88 point, respect-
fully, which matched the numbers of the two earlier studies. 
The average carcass grade of the top 10% of market price 
among Hawnoo in 2021 was 449.9±56.1 kg, 106.6±13.10 
cm2, 12.40±4.1 mm, and 8.40±0.9 point, which is similar to 
the data of the test population apart from MS [17]. The test 
population can be part of the top 10% of Hanwoo, and if it is 
used for livestock improvement selection, it is thought that 
the production of individuals with higher carcass grades is 
possible (Table 1). In the study’s statistical analysis results, 
the variation factor of BFT and MS were higher than that of 
other traits, and this is thought to be the result of both traits 
having wide deviations by the part that is measured, which 
is not the case in other traits. Choi et al [18] also show that 
the variation factor of BFT and MS of cows that have under-
gone progeny tests is three to four times higher than that of 
other traits, and this matches the results of this research study.

Comparison of estimated results with PBLUP and 
ssGBLUP
In the preceding research study done on genetic parameters 
estimated using both analysis methods, the research of Cesa-
rani et al [19] compares the heritability of fatty acids using 
Sarda breed cows’ pedigree and genotype, and results show 
that heritability estimated with pedigree is lower than esti-
mated using ssGLBUP. And the research of Esfandyari et al 
[20] compares the heritability and genetic correlation of 
growth traits and carcass traits using pedigree and genotype 
of pigs with pure and mixed bred, and results show that in 

all traits, heritability estimated using ssGBLUP is higher, 
and genetic correlation estimated through both analysis 
methods is similar. Also, both preceding research studies 
reported that estimated standard deviation is lower when 
using ssGBLUP than when using PBLUP, and this result 
corresponds with the this study’s results (Tables 2, 3). In 
fact, many studies that shown that including genotype when 
estimating genetic parameters is more accurate than using 
pedigree in many different cattle breeds [21-23].
 Differences in genetic parameters estimated using PBLUP 
and ssGBLUP are based on fundamental differences in ge-
netic models formed upon coefficient matrices used in each 
analysis method [24]. The simple formula for offspring’s true 
breeding value (TBV) is calculated by TBVoffspring = 1/2 TBVsire 
+ 1/2 TBVdam + Mendelian sampling term, which means that 
an offspring’s genetic ability is determined by adding the ge-
netic abilities passed on from the parents and the Mendelian 
sampling effect. Here, Mendelian sampling measures the ge-
netic variability between siblings, relates to the effect of mixing 
up genes randomly passed on from both parents, and pheno-
typic characteristic, record, and other traits of each individual 
differ due to linkage disequilibrium and heterozygote fluctu-
ation [25]. Therefore, when estimating the breeding value of 
an individual, accurate individual selection is only possible 
when ability evaluation that takes Mendelian sampling into 
consideration is carried out. NRM used in PBLUP is a ma-
trix that estimates kinship coefficient based on pedigree, and 
is difficult to consider accurate Mendelian sampling as the 
values are estimated based on expected values of alleles shared 
between descendants from a common ancestor. Also, even if 
there are 2, 10, or 20 individuals within the same full-sib 
family with the same parents, the expected value of kinship 
coefficient of all individuals, whose without phenotype, is 
calculated as 0.5, so all of the family’s individuals are estimated 
to have the same EBV (Table 4). As such, genetic ability test-
ing of full-sib families using PBLUP lacks reliability [26]. On 
the other hand, H-matrix used in ssGBLUP is a new kind of 
kinship coefficient matrix that combines NRM and GRM. 
Moreover, since it estimates kinship coefficient based on 
gene frequency shared by each individual, it has a high kinship 
coefficient and wide range even in half-sib families and families 
with low relationships as shown in Figure 1B, making it possible 
to identify the connecting points of a number of individuals. 
Also, through accurate coefficient estimation of gene mutation 
of each individual, accurate estimation of breeding value 
that takes Mendelian sampling into consideration becomes 
possible [25,27,28]. 
 The accuracy of GEBV estimated using ssGLBUP (Table 
2) shows that the estimation is higher than that of PBLUP, 
and as explained earlier, this is due to the difference in coeffi-
cient matrices, and using ssGBLUP which uses real kinship 
coefficient values can enable high-accuracy estimation as the 
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method estimates more connections between individuals 
than PBLUP and decreases residual variance [29].
 After, In order to increase the accuracy of genetic ability 
evaluation of the test population, measures such as a refer-
ence population that has many relationship connections and 
has various genetic mutations, density of SNP Chip, and ac-
curate pedigree tree is necessary. Among these factors, the 
most influential one is the number of offspring from the in-
dividual to be tested. The higher the number of offspring, 
the lower the deviation that estimates the genetic mutation 
of individuals to be tested, which means lower standard de-
viation and higher accuracy [30]. If the number of offspring 
is increased through embryo transplant, the GEBV accuracy 
of not only the offspring and sib test of the father but also 
those of the mother will increase. And a suitable selection 
criterion that takes into consideration the order of priority, 
how closely related individuals are, and the direction of ge-
netic improvement according to the combination of parents 
can be established (Table 4). Also, if the genotype of offspring 
cumulates, genotype of half-sib families will increase, allow-
ing for accurate evaluation of genetic ability and increase in 
effectiveness of genetic improvement.

CONCLUSION

This research study uses pedigree and genotype of full-sib 
families, PBLUP, ssGBLUP to estimate accuracy and breed-
ing value, and using the results estimated from both analysis 
methods, an effective method of analysis for full-sib families 
has been found. The accuracy of GEBV using ssGBLUP is 
0.18 to 0.20 higher than the accuracy of EBV obtained with 
PBLUP. Since the value of EBV is estimated based on expected 
values of alleles passed down from common ancestors. It 
does not take Mendelian sampling into consideration, so the 
EBV of all individuals within the same family is estimated to 
be the same value, but GEBV makes estimating true kinship 
coefficient based on different genotypes of individuals possible, 
so GEBV that corresponds to each individual is estimated 
rather than a uniform GEBV for each individual. Since Hanwoo 
cows bred through embryo transfer have a high possibility 
of having the same parent, if ssGBLUP which estimates GEBV 
after adding genotype is used, estimating true kinship coeffi-
cient corresponding to each individual becomes possible, 
allowing for accurate estimation of breeding value. Also, if 
embryo transplant which shows high efficiency at a short 
period of time in terms of productivity and genetic improve-
ment is applied to individuals with high carcass grades, the 
effectiveness of genetic improvement can be maximized 
through high selection intensity.
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