Browse > Article
http://dx.doi.org/10.5187/JAST.2013.55.1.13

Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle)  

Lee, Seung Soo (National Institute of Animal Science, RDA)
Lee, Seung Hwan (National Institute of Animal Science, RDA)
Choi, Tae Jeong (National Institute of Animal Science, RDA)
Choy, Yun Ho (National Institute of Animal Science, RDA)
Cho, Kwang Hyun (National Institute of Animal Science, RDA)
Choi, You Lim (National Institute of Animal Science, RDA)
Cho, Yong Min (National Institute of Animal Science, RDA)
Kim, Nae Soo (Department of Animal Science, Chungbuk national University)
Lee, Jung Jae (Department of Animal Science, Chungbuk national University)
Publication Information
Journal of Animal Science and Technology / v.55, no.1, 2013 , pp. 13-18 More about this Journal
Abstract
This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls.
Keywords
GBLUP; GEBV; SNP; Cross-validation; Genomic selection;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hayes, B. J., Bowman, P. J., Chamberlain, A. C., Verbyla, K. and Goddard, M. E. 2009a. Accuracy of genomic breeding values in multi-breed dairy cattle popilations. Genetics Selection Evolution. 41:51.   DOI   ScienceOn
2 Hayes, B. J., Visscher P. M. and Goddard, M. E. 2009b. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res. 91:47-60.   DOI   ScienceOn
3 Hwang, J. M., Kim, S. D., Choy, Y. H., Yoon, H. B. and Park, C. J. 2008. Genetic Parameter Estimation of Carcass Traits of Hanwoo Steers. J. Anim. Sci. Tech. (Kor.) 50(5):613-620.   과학기술학회마을   DOI   ScienceOn
4 Kim, H. S., Hwang, J. M., Choi, T. J., Park, B. H., Cho, K. H., Park, C. J, and Kim S. D. 2010. Research on the Reformation of the Selection Index for Hanwoo Proven Bull. J. Anim. Sci. Tech. (Kor.) 52(2):83-90.   과학기술학회마을   DOI   ScienceOn
5 Lee, J. H. 2011. Study on Methodology for Estimating Breeding Values using Genomic Information. Ph. D. thesis, Hankyoung National University.
6 Lee, J. J. 2012. Genetic Evaluation for Carcass Traits of Hanwoo using Pedigree and SNP Marker-Derived Relationship Matrix. Ph. D. thesis, Chungbuk National University.
7 Lee, S. H., Lim D. J., Jang, G. W., Cho, Y. M., Choi, B. H., Kim S. D., Oh S. J., Lee J. H., Yoon D. H., Park E. W., Lee, H. K., Hong, S. K. and Yang B. S. 2012. Genome Wide Association Study to Identity QTL for Growth Traits in Hanwoo. J. Anim. Sci. Tech. (Kor.) 54(5):1-10.   과학기술학회마을   DOI   ScienceOn
8 Meuwissen, T. 2003. 'Genomic Selection : the future of marker assisted selection and animal breeding'. FAO.
9 Misztal, I., Legarra, A. and Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92:4648-4655.   DOI   ScienceOn
10 Rolf, M. M., Taylor, J. F., Schnabel, R. D., Mckay, S. D., Mcclure, M. C., Northcutt, S. L., Kerley, M. S. and Weaber, R. L. 2010. Impact of reduced marker set estimation of genomic relationship matrices on genomic selection for feed efficiency in Angus cattle. BMC. Genetics 11:24.
11 SAS Institute Inc. 2004. SAS OnlineDoc$^{(R)}$ 9.1.3. Cary, NC: SAS Institute Inc.
12 Su, G., Brondum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P. and Lund, M. S. 2012. Comparison of genomic predcitions using medium-density (${\sim}54,000$) and high-density (${\sim}777,000$) single uncleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. J. Dairy Sci. 95:4657-4665.   DOI   ScienceOn
13 VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. dairy sci. 91:4414-4423.   DOI   ScienceOn
14 VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F. and Schenkel, F. S. 2009. Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92:16-24.   DOI   ScienceOn
15 Visscher, P. M., Medland, S. E., Ferreira, M. A., Morley, K. I., Zhu, G., Cornes, B. K., Montgomery, G. W. and Martin, N. G. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLOS Genetic 2(3):e41.   DOI
16 Whittaker, J. C., Thompson, R. and Denham, M. C. 2000. Marker-assisted selection using ridge regression. Genetical Research. 75:249-252.   DOI   ScienceOn
17 Meuwissen, T. H. E., Hayes, B. J. and Goddard, M. E. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics. 157: 1819-1829.
18 Habier, D, Tetens, J., Seefried, F. R., Lichtner, P. and Thaller, G. 2010. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution. 42:5.   DOI   ScienceOn
19 Cho, C. I. and Lee, D. H. 2011. Study on Genetic Evaluation using Genomic Information in Animal Breeding - Simulation Study for Estimation of Marker Effects. J. Anim. Sci. Tech. (Kor.) 53(1):1-6.   과학기술학회마을   DOI   ScienceOn
20 Forni, S., Aguilar, I. and Misztal, I. 2011. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution. 43:1.   DOI
21 Habier, D., Fernando, R. L. and Dekkers, J. C. M. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 177:2389-2397