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Abstract
In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and eval-
uation of cows are also an essential factor to increase earnings and genetic gain. This study 
aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree 
index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP 
[GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 
481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 
for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling 
score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for 
CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest 
(0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP 
method than other methods could be because genomic information may explain Mendelian 
sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of 
estimated breeding value (EBV) for selected animals. Regression coefficient between true 
breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, 
respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP 
and PI EBV in this study. In addition, number of effective chromosome segments (Me) statis-
tic that indicates the independent loci is one of the important factors affecting the accuracy 
of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic 
relationship between reference and test population. The correlations between Me and accu-
racy were −0.74 in CWT, −0.75 in EMA, −0.73 in MS, and −0.75 in BF, which were strongly 
negative. These results proved that the estimation of genetic ability using genomic data is the 
most effective, and the smaller the Me, the higher the accuracy of EBV.
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INTRODUCTION
The Hanwoo production system in Korea consists of three tiers, including the seed stock sector 
(bull selection sector), cow-calf operations, and feedlot sector [1]. The Korean government operates 
the bull selection program, which is called the National Genetic Evaluation Program, to select 
proven bulls to increase the genetic potential of the entire Hanwoo population [2]. The semen 
straws of selected bulls are distributed to the multiplier sector (reproduction of cows) to produce 
calves. The use of genetics to select bulls has gradually increased over the past 20–30 years and is 
remarkably successful [3]. However, no female genetic improvement program for carcass traits has 
been proposed. Korean farmers recognize the necessity of genetically improving the production 
and reproductive traits of cows to obtain higher profit margins. Compared with the bull selection 
breeding program, selecting females is more challenging because estimating the breeding value of 
a female is difficult due to a lack of information. Currently, the female estimated breeding value 
(EBV) can be determined for production and reproductive traits using the pedigree index (PI), 
bull (sire) pedigree, and best linear unbiased prediction method [4]. Pedigree data are traditionally 
applied to determine the EBV using phenotypes generated from half-sib, full-sib, and progeny 
testing [5]. However, pedigree information may be recorded incorrectly; for example, some 
individual identification tag numbers could be lost or incorrectly attached to livestock, leading to 
false pedigree information and inaccurate predictions [6]. Thus, determining an accurate EBV to 
select the female population during farm-level breeding operations is difficult. Farmers running 
small cow farms that produce calves wish to predict their cows’ EBV to obtain cows with better 
genetic potential; therefore, a more effective method with few errors is needed.

The disadvantages of the PI and pedigree-based best linear unbiased prediction (PBLUP) 
methods could be overcome by recent developments in genomic technology, which enable 
estimation of the genomic breeding value (GEBV) using DNA variants [7, 8]. In addition, the cost 
of these tests has been decreasing. Therefore, genomic information allows us to derive more accurate 
breeding values than previous methods [9]. 

The accuracy of the EBV can be affected by the genetic relatedness (genetic co-variance) between 
a large reference population and female candidates. The effective number of chromosome segments 
(Me) is used to estimate genetic relatedness between two populations [10]. Me is also defined as the 
variance of identity-by-descent among genetically related individuals [11]. The lower the Me value, 
the closer the genetic relationship between the reference and test population [12]. The accuracy of 
the GEBV increases if the genetic relatedness between the reference and test population is high. 

This study aimed to compare the accuracy of three methods (PI, PBLUP, and the genomic best 
linear unbiased prediction [GBLUP]) for analyzing a reference population comprised of half-sib 
family data and a test population (481 cows), and for identifying factors affecting the accuracy of 
EBVs for replacement cows for selecting females.  

MATERIALS AND METHODS
Dataset
Using a reference population (n = 16,971) and female test population (n = 481), we compared the 
accuracy of EBVs of females estimated using different methods (Fig. 1). The reference population 
was comprised of 16,971 steers derived from half-sibs of 485 bulls genotyped with the Illumina 
bovine 50K chip (Illumina, San Diego, CA, USA). Fig. 2 describes the data collection process 
and shows the structure of the reference population. The phenotypes (carcass weight [CWT], 
eye muscle area [EMA], backfat thickness [BFT], and marbling score [MS]) for the reference 
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population (n = 16,971) were collected from Korea Animal Products Quality Evaluation. Summary 
statistics of the reference phenotype are shown in Table 1. The mean and standard deviation of 
the CWT, EMA, BFT, and MS were 441.2 ± 50.88 kg, 95.81 ± 12.21 cm2, 14.26 ± 4.92 mm, 
and 5.95 ± 1.85, respectively. The data were normally distributed, as shown in Fig. 3. The pedigree 
information for the reference population (n = 16,971) consisted of three generations including 
44,145 animals (Table 2). The female herd (n = 481) was one-quarter genetically related to validate 
their breeding value and there were 1,595 ancestors in the pedigree (Table 3). All the female herd 
sample cows were selected randomly from all over the country, and derived from 104 Korea proven  
(KPN) bulls, and those cows are not part of the reference population. Pedigree information for the 
test and validation animals was collected from the Korea Animal Improvement and Association 
([KAIA] https://www.aiak.or.kr/).

Quality control of 50K single nucleotide polymorphism chip data
The 481 cows were genotyped using the bovine 50K single nucleotide polymorphism (SNP) chip 
(Illumina). Quality control was performed while estimating the GEBVs of the 481 cows (test 
population) based on 16,971 commercial Hanwoo (reference population). Using Plink 1.9 software 
(http://pngu.mgh.harvard.edu/purcell/plink/), SNP markers with missing call rates > 0.1, minor 
allele frequency < 0.01, and a p-value of Hardy-Weinberg equilibrium < 0.0001 were removed [13]. 
A total of 40,635 SNP markers were used in this study.

Estimates of breeding values
In this study, we compared the accuracy of breeding values estimated using three different methods 
(PI, PBLUP, and GBLUP) for female replacement and management.

Pedigree index calculation
The National Agricultural Cooperative Federation and National Institute of Animal Science 
conducted performance and progeny testing to select KPN. The EBV accuracy for these bulls was 

Fig. 1. Schematic of the breeding value accuracy using three different methods (PI, PBLUP and GBLUP). 
(A) 258 KPN bulls with 99% of BLUP accuracy regarded as true breeding value (TBV). (B) test population 
for cow with 50K genotypes. For empirical accuracy correlation TBV and EBV, theoretical accuracy using 
prediction error variance. KPN, Korean proven; PI, pedigree index; PBLUP, pedigree-based best linear unbiased 
prediction; GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction.
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75%–80%. Based on this information, the PIs and EBVs of the test cows were estimated using a 
three-generation pedigree (sire, grandsire, and grand-grandsire). The equation was as follow [14]s:

Pedigree-based best linear unbiased prediction 
A mixed model was used for PBLUP, including traits and considering the effects of environmental 
factors. The model was constructed using the BLUPF90 program [15,16] and has the following 
equation [17]:

y = Xb + Zu + e

where y is a vector of the phenotype information; X contains the design matrix of the observations 
for fixed effects; b is the vector of the fixed effects, including farm, birth year, and month, slaughter 

Fig. 2. Distribution of animals across the country and chart of KPN which is the number of progenies. (A) Distribution of reference population sampled 
across the country. Blue color is 23 to 26 age month, red color is 27 to 30 age month, orange color is 31 to 34 age month and gray color is less than 23 age 
month. (B) Number of KPN bulls (half-sib families) with different numbers of progenies in the reference population. Structure of the reference population of KPN 
bulls (half-sib families) based on the number of progeny in each herd. KPN, Korea proven.

Table 1. Descriptive summary statistics of carcass trait data in reference population (n=16,971)
Traits Mean SD Minmum Maximum

CWT (kg) 441.2 50.43 214.0 632.00

EMA (cm2) 95.82 12.07 43.00 148.00

BFT (mm) 14.2 4.77 1.00 35.00

MS 5.95 1.85 1.00 9.00

Age 30.26 1.91 21 40
CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness, MS: marbling score; Age, monthly age.
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Fig. 3. Distributions of the data for carcass traits of 16,971 Hanwoo reference population. (A) Carcass weight (kg), (B) Eye muscle area (cm2), (C) 
backfat thickness (mm), (D) marbling score (1–9).

Table 2. Summary statistics of pedigree structure for reference population data (n=16,971) 
Item No. of animals (%)

Animals in pedigree 44,145 (100)

Sires 419 (0.95)

Dams 14,467 (32.77)

Animals with data 16,971 (100)

One parent unknown 8 (0.05)

Both parents unknown 2,353 (13.86)

Both parents known 14,610 (86.09)
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year and month, and age; Z is the design matrix-matching phenotype value and random effect 
values; u is the vector of the random effects with a normal distribution; e is the vector of residual 
error effects with a normal distribution ~N(0, 2

eIσ ). 2
eIσ  is random variance, and I is the identity 

matrix. 2 2/e aλ σ σ= . A is the numeric relationship matrix (NRM) constructed based on the pedigree 
information.

Genomic best linear unbiased prediction
GBLUP uses the genomic relationship matrix (GRM) based on SNP markers. The GRM is 
expressed as [18].

Then, 

where M is the matrix for genes of individuals, m is the total number of SNP markers, and pi is the 
frequency at the i-th position in the SNP.

The general linear mixed model equation for GBLUP is:

where Z is the incidence matrix for the animal effect (a), X is the incidence matrix for the fixed 
effect (b), 2

eIσ  is residual variance, and a ~N(0, G 2
aσ ). 2 2/e aλ σ σ= . Therefore, GBLUP is a BLUP that 

replaces NRM with G [GRM]).

Accuracy of the estimated breeding values estimated using the three methods
This study investigated the accuracy of the EBVs according to prediction error variance and the 
correlation between the true breeding value (TBV) and EBV. To investigate the accuracy of the 
EBVs derived using the three methods, we selected those of the top 258 KPN bulls (i.e., bulls with 
EBVs predicted by the BLUP method with 95% accuracy) as the TBVs. The Pearson’s correlation 
coefficients between TBV and the EBVs for the 258 KPN bulls were considered to reflect the 
actual accuracy.

Table 3. Summary statistics of pedigree structure for cow test population (n=481)
Item No. of animals (%)

Animals in pedigree 1,595 (100)

Sires 93 (5.83)

Dams 481 (30.16)

Animals with data 481 (100)

One parent unknown 42 (8.73)

Both parents unknown 0 (0)

Both parents known 439 (91.26)
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AccuracyEBV = cor(TBV, EBV)

The accuracy of the EBVs for cows was calculated based on the prediction error variance (SE2) 
and additive genetic variance ( 2

gσ ) of the trait estimated using the BLUPF90 program [15]. The 
equations for the theoretical and PI EBV accuracy are as follows: [14]

PIAcc = 0.25 × Acc of EBVsire + 0.125 × Acc of EBVMaternal Grandsire  
+ 0.0625 × Acc of EBVMaternal Grand-Grandsire

Calculating the number of effective chromosome segments
The genetic relatedness between the reference and test data is an important factor affecting 
genomic prediction accuracy that varies depending on the data set. Several methods are available to 
calculate the relatedness of the reference and test populations. The number of effective chromosome 
segments (Me) is one of the most useful methods for calculating genetic relatedness. To determine 
the genetic relatedness between the reference and test populations, which affects the accuracy of the 
cow breeding value (EBV), we calculated Me using genomic information [19]. Various approaches 
can be used to estimate Me within a population. In this study, the following equation was used to 
estimate Me [20].

The genomic relationship between individuals was calculated as the covariance matrix (Gij) [21]. 
In the Gij, the variance of the covariance of the entire reference population was calculated for each 
individual and converted into a reciprocal number. If the variance between individual i and j was 
close to 0, the genetic relationship was considered weak [20]. The Gij for the genomic relationship 
was estimated from Me. In addition, we investigated the difference in prediction accuracy based on 
Me.

RESULTS AND DISCUSSION
The accuracy of the EBV is ordinarily determined by two methods. Empirical accuracy is reflected 
in the Pearson’s correlation between TBV and EBV [22] for the three different methods, and 
theoretical accuracy is calculated from the prediction error variance and additive genetic variance 
for individual test cows [23–25]. TBV could not be determined in this study due to a lack of 
information on the genes controlling the phenotype. Therefore, we regarded the EBVs of the top 
258 KPN bulls as TBVs to compare the accuracy of breeding values among the three different 
methods (PI, PBLUP, and GBLUP). The EBVs were determined for the top 258 KPN bulls and 
the reference population (16,971 cattle) using the three methods. Fig. 4 shows that the accuracies 
of GEBV were 0.78, 0.54, 0.62, and 0.66 for CWT, EMA, BFT, and MS, respectively. The 
PBLUP accuracies were 0.63 and 0.56 for CWT and BFT, and 0.39 and 0.56 for EMA and MS, 
respectively. The PI showed accuracies of 0.35, 0.27, 0.22, and 0.3 for CWT, EMA, BF, and MS, 
respectively. The accuracy of the GBLUP method was about 12% higher than that of the PBLUP 
method using pedigree information (Fig. 4). Many studies have shown that the GBLUP method 

2
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is superior to PBLUP, and Naserkheil et al. [26] reported that GBLUP (single- and multiple-trait 
GBLUP) was approximately 19% and 36% more accurate than conventional BLUP models (single- 
and multiple-trait GBLUP) for carcass traits in Hanwoo. Moreover, GBLUP has performed well 
in many studies, and the data of the present study showed similar trends [27,28].

We investigated theoretical breeding value accuracy for individual test cows using prediction 
error variance. The breeding value of individual test cows was also estimated using the PI, PBLUP, 
and GBLUP methods. The reference population consisted of 416 KPN families in different age 
classes, and the number of progenies of each KPN half-sib family varied from 5 to 378 (Fig. 2). The 
accuracies of the GBLUP method were 0.634, 0.659, 0.619, and 0.627 for CWT, EMA, BF, and 

Fig. 4. Comparison of accuracy of genomic breeding values from three methods (PI, BLUP and GBLUP) with 16,971 phenotypic records against 258 
KPNs bulls with true breeding value (we considered 95% of accuracy from BLUP as TBV). CWT, carcass weight; GEBV, genomic estimates of breeding 
value; PEBV, pedigree estimates of breeding value; PI, pedigree index; EMA, eye muscle area; BFT, backfat thickness; MS, marbling score; KPN, Korea 
proven; TBV, true breeding value.
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MS, respectively. The PBLUP accuracies were 0.434, 0.445, 0.435, and 0.431 for CWT, EMA, BF, 
and MS, and those for PI were 0.276, 0.294, 0.293, and 0.293, respectively (Fig. 5). The accuracy 
of the GEBV method was highest for all traits. The accuracies of the PBLUP EBV and PI EBV 
were about 0.2 and 0.35, which were lower than that of the GEBV. A difference of about 0.15 was 
detected between the accuracy of the PBLUP EBV and PI EBV methods.

The finding that GBLUP outperformed PBLUP and PI could be explained by several factors, 
such as genetic covariance (genetic relatedness) between the reference and test populations [29]. 
In this study, a heatmap plot of the additive genetic relationships between the reference and test 
populations (cow) showed that, with the GRM, there was a stronger additive genetic relationship 
compared with pedigree-based NRM (Fig. 6). Clark et al. [29] reported that the accuracy of 
genomic selection depends on the strength of the relationships between the reference and test 
populations. If unrelated animals were estimated using the PBLUP method, accuracy would 
be close to zero. In contrast, the GEBV method showed high accuracy for animals that had no 
pedigree relationship with animals in the reference data set. The breeding values estimated using 
the GBLUP method were more accurate for closely related animals (~0.5) compared to those of 
the PBLUP and PI. Similar results were reported by Hayes et al. [30] and Habier et al. [31,32] 
for populations with a close relationship. Therefore, genetic relatedness is a major factor in the 
higher accuracy of the GBLUP compared to the PBLUP and PI seen in this study. A drawback 
of applying the PBLUP and PI methods to a half-sibling dataset (without individual phenotypes 

Fig. 5. Average of theoretical accuracy using prediction error variance across all 4 traits of three methods for 481 cows. GEBV (red), estimated 
breeding value using genomic-BLUP; PEBV (green), estimated breeding value using pedigree-BLUP; pedigree index (blue), estimated breeding value using 
pedigree index. CWT, carcass weight; EMA, eye muscle area; BFT, back-fat; MS, marbling score; BLUP, best linear unbiased prediction.
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or progeny information) is that the accuracy of the EBV does not increase over 50% because of 
Mendelian sampling error [33]. This drawback cannot be solved at birth of the animal using the 
pedigree information [33]. Analysis of genetic gain depends on the accuracy and time taken to 
estimate the Mendelian sampling term. The GBLUP method is one way to control Mendelian 
sampling error because it provides useful information on alleles that originated from the parents. 
And both NRM and GRM consider an inbreeding coefficient, but GRM has more accurate 
inbreeding coefficient information (Fig. 7). Therefore, the GBLUP method produced more accurate 
breeding values than the PBLUP method in this study. The pedigree information included man-
made error (affecting 10% of test animals), which caused the NRM to diverge from the actual 
genetic covariance. A simulation study by Nwogwugwu et al. [6] showed that a 20% pedigree 
information error rate led to a 5%–10% decrease in prediction accuracy.

Genetic relatedness between reference and test populations is reflected in the Me and effective 
population size (Ne) [34], where Me represents the number of independent chromosomes arising 
during gametogenesis; the lower the Me value, the closer the relationship between the reference 
and test populations [19]. Fig. 8 shows the correlation between the Me values of the reference and 
test cow populations, and the accuracy of the EBVs for the 481 test cows. The correlations between 
the Me values and accuracy values for CW, EMA, MS, and BFT were −0.74, −0.75, −0.73, and 
−0.75, respectively. The reference population included 356 KPN half-sibs and the replacement cow 
population consisted of 104 KPN half-sibs; 60 KPNs were common between the two populations 
(Fig. 9A). Fig. 9B shows the Me values and accuracies of the EBVs of test cows with common KPN 
sires and different KPN ancestors. The Me value of the common KPN cows was 1,237.09 for all 

Fig. 6. Comparison of genetic relationship of pedigree based NRM and genomic based GRM for test and ancestor (KPN) population. Red and blue 
group color represent ancestor (KPN; red), test data (cow; blue), respectively. Heatmap color density indicating levels of relationships was displayed. NRM, 
numeric relationship matrix; GRM, genomic relationship matrix; KPN, Korea proven.
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Fig. 7. Comparison of genetic relationship of pedigree based NRM (A matrix) and genomic based GRM (G matrix). (A) Relationship between reference 
population (16,971) and test population (481). (B) Relationship of cow test population (481). NRM, numeric relationship matrix; GRM, genomic relationship 
matrix.

Fig. 8. Correlation between accuracy of genomic breeding value and number of effective chromosome segments (Me) in reference and test 
population all 4 traits (CWT, EMA, BFT and MS). Each line means the average value of accuracy and Me statistic. Red dots are cows with the same KPN 
between the reference and test population, blue dots are cows with only the KPN of the test population. CWT, carcass weight; EMA, eye muscle area; BFT, 
back-fat; MS, marbling score; KPN, Korea proven.
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traits, and the accuracies were 0.64, 0.62, 0.63, and 0.66 for CWT, EMA, BF, and MS, respectively. 
In contrast, the Me value of the counterparts was 2,063.22 for all traits, and the accuracies were 
0.6, 0.59, 0.6, and 0.63 for CWT, EMA, BF, and MS, respectively. It is logical to suggest that the 
closer genetic relationship between the reference and test animal (low Me) led to more accurate 
EBV predictions. A set of simulation data was generated based on parameters with an Ne of 1,000, 
51 quantitative trait loci (QTLs), and heritability of 0.3 to estimate the accuracy of the GBLUP 
method [35-37]. This simulation study showed that lower Me (NQTL) values led to more accurate 
GBLUP and BayesB results. Me is defined as the variance of identity by descent among individuals 
for genetic relatedness.

In conclusion, we compared genomic prediction accuracy among three methods (PI, PBLUP, 
and GBLUP), using 258 KPN bulls with 95% accurate TBVs derived from BLUP. GBLUP 
outperformed PBLUP and the PI in terms of the accuracy of the EBVs. The accuracy of the 
GBLUP method was about 12% higher than that of the PBLUP method when using pedigree 
information. The accuracy of the GEBV method was higher than that of the PBLUP and PI for 
all traits, as reflected in cow EBVs estimated using collateral information (half-sib dataset). We 
propose that genomic data can be used to obtain random inheritance information about alleles 
from parents; this explains the high prediction accuracy of the GBLUP method used in this 
study. Moreover, genetic relatedness between the reference and test (cow) populations affected the 
accuracy of the EBVs estimated from the additive genetic relationship and Me. A difference in Me 
values between common KPN and cow KPN of about 820 increased the accuracy of the GBLUP 
by about 3.25%. Measuring the Me value of animals could be useful for determining the accuracy of 
cow EBVs estimated using GBLUP.
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