• Title/Summary/Keyword: Ultrasound transducer

Search Result 195, Processing Time 0.028 seconds

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.

Design of Low-Power Hybrid LNA with Multi-Input for Mobile Ultrasound System (이동형 초음파시스템에 적합한 다중 입력방식의 저전력 혼성 저잡음 증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Sung-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Ultrasound system is one of the complex wireless signal processing systems that are widely used in the fields of modern industry such as medical diagnostics, underwater communications, and sensor-networks. Miniaturization of ultrasound system has been raging recently. In this paper, a hybrid LNA that is suitable for miniaturization and mobile diagnostic ultrasound system has been developed. The proposed LNA has low noise figure of less than 5dB, and the feedback resistor is designed to be electrically adjusted in order to attain the impedance-matching for various ultrasound transducers. It supports the whole ultrasound frequencies from 10KHz to 150MHz frequency band and also provides sleep modes. A gain from -18.8 to -29.5 dB is achieved by adjusting each transducer to fit the system character. Power consumption can be reduced up to 90% in similar performance as compared to the existing LNA.

A transducer array for focusing the ultrasound setting angle (초음파 집속을 위한 트랜스듀서 어레이 집속 각도 설정)

  • Lee, Sang-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.45-48
    • /
    • 2016
  • The treatment of obesity have been developed various devices for the treatment of obesity, the ultrasound is to be made after the state changes to become easy fat decomposition by heat and vibrations to facilitate the flow of blood and lymph fatty acid released into the blood. There is such ultrasonic transducer array is used in obesity therapy focusing angle of the transducer array and the frequency may have a significant impact on the degradation of fat. In this paper, we set the frequency that reaches the shortest time to a set temperature 27kHz, 1MHz, by applying a transducer with a diameter of 5mm, 10mm, 16mm for the frequency of 3MHz, obtain the wavelength and near the stomach in order to set the frequency of the transducer array, which was set to the focusing angle of the transducer with three contact surfaces. As a result, the time to reach the set temperature was short days when 3MHz frequency, the focusing angle is titrated is $40^{\circ}$.

A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer (초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구)

  • Yoo, Sang-Hyun;Choi, Won-Jae;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF

Study of Ultrasound Imaging Technique for Diagnosing Osteoporosis (골다공증 진단을 위한 초음파 영상화 진단 기법 연구)

  • Kim, H.J.;Han, S.M.;Lee, J.H.;Lee, M.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • Ultrasonic has been proposed as an attractive means of detecting bone loss. There have been several commercial ultrasound devices developed for measuring the heel to predict fracture at other bones. However, these devices select only single point of heel bone as measurement site. It causes poor assessment of bone quality due to the error of transducer positioning. In an effort to improve current ultrasound systems, we evaluated the linear scanning method which provides better prediction of bone quality and an accurate image of bone shape. The system used in this study biaxially scans a heel bone using automated linear scanning technique. The results demonstrated that the values of ultrasound parameters varied with different positions within bone specimen. It has been also found that the linear scanning method could better pre야ct bone quality, eliminating the error of transducer positioning.

A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia (전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구)

  • Park, Mun-Kyu;Noh, Si-Cheol;Park, Jae-Hyun;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

A Study on the Quality Control of Transvaginal Ultrasound Transducer using ATS-539 Ultrasound Phantom (ATS-539 초음파 팬텀을 이용한 경질 초음파 검사용 탐촉자의 정도관리에 대한 연구)

  • Park, Ji Hye;Heo, Yeong Cheol;Kim, Yon min;Han, Dong Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.463-472
    • /
    • 2021
  • Demand for examinations using transvaginal transducer with high frequencies is increasing to observe pelvic organs in gynecological ultrasound tests. However, the quality control of the replacement probe in clinical trials is not properly implemented and the evaluation criteria have not been established. Therefore, 58 transvaginal transducers and 20 convex transducers were applied to the ATS-539 ultrasound phantom for 20 ultrasound devices currently in clinical use to obtain their respective images and measure them quantitatively and qualitatively. For quantitative measurements, vertical measurement, horizontal measurement, and focal zone and qualitative measurements, dead zone, axial·lateral resolution, sensitivity, functional resolution, gray scale·dynamic range were performed. Quantitative statistical analysis showed significant differences between the two transducers in the lateral measurement and local area (p<0.05). qualitative comparative analysis showed differences in sensitivity and functional resolution. This occurs due to the difference in frequency between transducers and the transducer's injection geometry. Based on the above experiments, the tolerance for horizontal measurement is raised to 10% (±8 mm), the tolerance for sensitivity is observed up to 6 cm deep, which is 12 cm deep,which is the level of the third quartile (75%). The permissible range of functional resolution is up to 6 (12 cm), 6 (12 cm), 11 (11 cm), 9 (9 cm), 6 (6 cm) target, which is the level of the third quartile (75%). It is considered reasonable to adjust the depth of targets in gray scale·dynamic range to measure at a depth of 2 cm, which is 50% of the depth of 4 cm. As above, the criteria for evaluating the quality of transvaginal transducer for use in the past have been proposed and it is expected that this study will be used as a basic data for the production of phantom exclusively for transvaginal transducer in the future.

Electromyographic Analysis of Wrist Flexors by the Shape of Ultrasound Head (초음파 도자의 모양에 따른 손목굽힘근의 근전도 분석)

  • Kim, Won-Ho;Kim, Jong-Man;Park, Hyung-Ki;Park, Eun-Young
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The purpose of this study was to investigate electromyographic activities of the flexor digitorum superficialis (FDS) and the flexor carpi ulnaris (FCU) by the shape of the ultrasound head. Twelve healthy subjects participated and performed ultrasound therapy with a round head and a long handled head during each 5-minute application. Electromyographic activities of the FDS and FCU were recorded by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. There was no difference in the muscular fatigue of FDS and FCU as determined by the shape of the ultrasound head (p>.05). Without the shape of head, the mean power frequency decreased with the time. There also was no difference in %MVIC of the FDS and FCU as determined by the shape of the ultrasound head (p>.05), but the force exerted exceeded 20%MVIC. There was however a significant difference in the amount of cumulative workload of the FDS and FCU as determined by the shape of ultrasound head (p<.05). The workload was however not affected by the shape of the ultrasound head. Constant static grasp of ultrasound transducer head during ultrasound therapy is considered a high risk factor of work-related musculoskeletal disease.

  • PDF