• Title/Summary/Keyword: Ultrasound power

Search Result 194, Processing Time 0.025 seconds

Photo-Assisted Sondegradation of Hydrogels in the Presence of TiO2 Nanoparticles

  • Ebrahimi, Rajabali;Tarhandeh, Giti;Rafiey, Saeed;Narjabadi, Mahsa;Khani, Hamed
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.92-101
    • /
    • 2012
  • The degradation of one of the commercially important hydrogel based on acrylic acid and acryl amide, (acrylic acid-co-acryl amide) hydrogels, by means of ultrasound irradiation and its combination with heterogeneous ($TiO_2$) was investigated. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30-80 W). $TiO_2$ sonophotocatalysis led to complete (acrylic acid-co-acryl amide) hydrogels degradation with increasing catalyst loading, while, the presence of $TiO_2$ in the dark generally had little effect on degradation. Therefore, emphasis was totally on the sonolytic and sonophotocatalytic degradation of hydrogels and a synergy effect was calculated for combined degradation procedures (Ultrasound and Ultraviolet) in the presence of $TiO_2$ nanoparticles. $TiO_2$ sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. A kinetics model based on viscosity data was used for estimation of degradation rate constants at different conditions and a negative order for the dependence of the reaction rate on total molar concentration of (acrylic acid-co-acryl amide) hydrogels solution within the degradation process was suggested.

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution (Sodium Dodecylbenzene Sulfonate 수용액의 분해반응에서 초음파 효과)

  • Yim, Bong-Been
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.561-567
    • /
    • 2004
  • The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup.

Ultrasound-Assisted Extraction of Canola Oil Using Supercritical Fluid Process (초음파가 적용된 초임계 유체 공정을 이용한 캐놀라오일 추출)

  • Hwang, Ah-Reum;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.437-442
    • /
    • 2010
  • The objective of this study was to investigate the effect of ultrasound on the extraction of oil from canola seeds when supercritical carbon dioxide ($SCCO_2$) was used as an extraction solvent. The ultrasound-assisted $SCCO_2$ extraction were carried out while varying such operating parameters as particle size of crushed canola seed, flow rate of $SCCO_2$, aspect ratio of the extraction vessel, and ultrasound power. The extraction rate decreased with increasing particle size of samples, showing a maximun at a $CO_2$ flow rate of 6.2 L/min. Both the extraction rate and extraction yield increased with a decrease in the aspect ratio of the extraction vessel. For the ultrasoundassisted $SCCO_2$ extraction, the extraction yield was slightly increased when the $CO_2$ flow rate was below 6 mL/min with sample A and B.

Comparison of inactivation and sensitivity of antibiotic resistance bacteria by ultrasound irradiation (초음파 조사에 의한 항생제 내성균 불활성화 및 감수성 변화)

  • Lee, Sunghoon;Nam, Seong-Nam;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.191-204
    • /
    • 2019
  • The 20-kHz ultrasonic irradiation was applied to investigate bacterial inactivation and antibiotic susceptibility changes over time. Applied intensities of ultrasound power were varied at 27.7 W and 39.1 W by changing the amplitude 20 to 40 to three bacteria species (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). By 15-min irradiation, E. coli, a gram-negative bacterium, showed 1.2- to 1.6-log removals, while the gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus, showed below 0.5-log removal efficiencies. Antibiotic susceptibility of penicillin-family showed a dramatic increase at E. coli, but for other antibiotic families showed no significant changes in susceptibility. Gram-positive bacteria showed no significant differences in their antibiotic susceptibilities after ultrasound irradiation. Bacterial re-survival and antibiotic susceptibility changes were measured by incubating the ultrasound-irradiated samples. After 24-hour incubation, it was found that all of three bacteria were repropagated to the 2- to 3-log greater than the initial points, and antibiotic inhibition zones were reduced compared to ones of the initial points, meaning that antibiotic resistances were also recovered. Pearson correlations between bacterial inactivation and antibiotic susceptibility showed negative relation for gram-negative bacteria, E. coli., and no significant relations between bacterial re-survival and its inhibition zone. As a preliminary study, further researches are necessary to find practical and effective conditions to achieve bacteria inactivation.

Effects of Ultrasound on Skin Elasticity and Elasticity of Deeper Skin in Healthy Women (초음파 사용이 건강한 여성의 피부 탄력과 피부 깊은 탄력 개선에 미치는 영향)

  • Min-Joo Ko;Gi-Soo Kim;Eun-Mi Jang;Jae-Seop Oh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • Purpose : Aging is reflected on the face of women due to the depletion of collagen and hydration in the facial skin overtime. This study investigated the effect of multiple SONO® ultrasound for a 4-week period on the skin health by measuring the skin elasticity and deeper skin elasticity in the tested women subjects. Methods : Twenty healthy women were recruited for this experiment. All the participants applied multiple ultrasound device (SONO®) during this experiment. The SONO® device was set to ANTI-AGING function and five power steps such as 1, 3, 10 and 17 MHz were used during this experiment, and directly contacted with the facial skin. Specifically, the probe was contacted with the entire face except for the nose and eyes for 10 min on each side of the face every day and repeated for 4 weeks. The skin elasticity and the elasticity of deeper skin were measured at three times (0, 2, 4 weeks) using a Ballistometer and dermal torque meter, respectively. The one way repeated ANOVA was used to compare the skin elasticity and the elasticity of deeper skin among three times (0, 2, 4 weeks). Results : The skin elasticity (p<.05) and elasticity of deeper skin (p<.05) were significantly increased at 2 weeks and 4 weeks of intervention compared to that at 0 weeks. For the skin elasticity, there was no significant difference between 2 and 4 weeks of intervention (p>.05). For the elasticity of deeper skin, it increased significantly at 4 weeks compared to 2 weeks of intervention (p<.05). Conclusion : These findings suggest that applying multiple SONO® ultrasound to the facial skin of healthy women for 4 weeks, can increase the skin elasticity and elasticity of deeper skin by supporting epidermal hydration and dermal collagen production.

Effect of Ultrasound Therapy at the ST11 on Sympathetic Nervous System Change: A Prospective Randomized Controlled Study (기사혈(氣舍穴, ST11)에 적용한 혈위 초음파요법이 교감신경계에 미치는 영향: 전향적 무작위 대조군 연구)

  • Shinwoo Kang;Dongho Keum
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.4
    • /
    • pp.167-184
    • /
    • 2023
  • Objectives This study was designed to assess the effectiveness of ultrasound therapy at the ST11 for regulation of sympathetic hyperactivity. Methods Forty healthy adult subjects were assigned to experimental group and control group. After taking mental stress, ultrasound therapy was applied at the ST11 in experimental group and sham-ultrasound therapy was applied in control group. The evaluation of sympathetic activity was measured by blood pressure, pulse rate, and heart rate variability at 3 times (Time 1: before the stress stimulation, Time 2: after the stress stimulation, Time 3: after the intervention). The primary end point was consisted of normalized (norm) low frequency (LF)/high frequency (HF) ratio, LF (norm), HF (norm). The secondary end point was consisted of systolic blood pressure, diastolic blood pressure, pulse rate, mean heart rate, standard deviation of NN intervals, root mean square of the successive differences, total power (log). Results After the stress stimulation, all subjects showed sympathetic hyperactivity. After the intervention, the experimental group showed lower sympathetic activity than the control group. Comparing the Time 3 and Time 1, the experimental group showed no significantly differences in sympathetic activity while the control group showed higher sympathetic activity in Time 3 than Time 1. Comparing the Time 3 and Time 2, the experimental group showed lower sympathetic activity in Time 3 than Time 2 while the control group showed higher sympathetic activity in Time 3 than Time 2. Conclusions We suggest that the ultrasound therapy at ST11 can decrease sympathetic activity in sympathetic hyperactivity condition.

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

Multiple Transmit Focusing Method With Modified Orthogonal Golay Codes for Ultrasound Imaging (초음파 영상에서 변형된 직교 골레이 코드를 이용한 동시 다중 송신 집속 기법)

  • 김배형;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.217-231
    • /
    • 2003
  • Coded excitation with complementary Golay sequences is an effective means to increase the SNR and penetration of ultrasound imaging. in which the two complementary binary codes are transmitted successively along each scan-line, reducing the imaging frame rate by half. This method suffers from low frame rate particularly when multiple transmit focusing is employed, since the frame rate will be further reduced in proportion to the number of focal zones. In this paper. a new ultrasound imaging technique based on simultaneous multiple transmit focusing using modified orthogonal Golay codes is proposed to improve lateral resolution with no accompanying decrease in the imaging frame rate, in which a pair of orthogonal Golay codes focused at two different focal depths are transmitted simultaneously. On receive, these modified orthogonal Golay codes are separately compressed into two short pulses and individually focused. These two focused beams are combined to form a frame of image with improved lateral resolution. The Golay codes were modified to improve the transmit power efficiency (TPE) for practical imaging. Computer simulations and experimental results show that the proposed method improves significantly the lateral resolution and penetration of ultrasound imaging compared with the conventional method.

Sonolysis of Trichloroethylene in the Multi Ultrasound Irradiation Reactor (다중 초음파 조사 반응조에서의 TCE의 초음파 분해)

  • Lee, Min-Ju;Oh, Je-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.873-882
    • /
    • 2009
  • Sonolysis of TCE (Trichloroethylene) was performed in 584 kHz rectangular reactor. At first, the effect of acoustic power and aqueous temperature which are both important factors to operate ultrasound system on sonolysis of TCE were examined under one side irradiation condition. First degradation rate constants of TCE and chloride yields were increased with increasing acoustic power from 100 to 300 W. And increasing the aqeuous temperature resulted in the increase of first degradation rate constants of TCE and the decrease of chloride yield. Sonolysis of TCE was performed under multi ultrasound irradiation conditions that total acoustic power of 300 W was distributed according to the number of irradiation sides. First degradation rate constants of TCE followed the order 4 sides > 3 sides > 1 side > 2 sides (parallel) > 2 sides (orthogonal). When comparing the experimental results under parallel and orthogonal irradiation conditions of 2 sides with 300 and 450 W, first degradation rate constants of TCE were similar, while production rate constants of hydrogen peroxide were more higher at parallel conditions compared to orthogonal conditions.