Browse > Article
http://dx.doi.org/10.5012/jkcs.2012.56.1.092

Photo-Assisted Sondegradation of Hydrogels in the Presence of TiO2 Nanoparticles  

Ebrahimi, Rajabali (Member of young researchers club, Islamic Azad University)
Tarhandeh, Giti (Member of Scientific Association of chemistry, Takestan branch, Islamic Azad University)
Rafiey, Saeed (Member of Scientific Association of chemistry, Takestan branch, Islamic Azad University)
Narjabadi, Mahsa (Member of Scientific Association of chemistry, Takestan branch, Islamic Azad University)
Khani, Hamed (Member of Scientific Association of chemistry, Takestan branch, Islamic Azad University)
Publication Information
Abstract
The degradation of one of the commercially important hydrogel based on acrylic acid and acryl amide, (acrylic acid-co-acryl amide) hydrogels, by means of ultrasound irradiation and its combination with heterogeneous ($TiO_2$) was investigated. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30-80 W). $TiO_2$ sonophotocatalysis led to complete (acrylic acid-co-acryl amide) hydrogels degradation with increasing catalyst loading, while, the presence of $TiO_2$ in the dark generally had little effect on degradation. Therefore, emphasis was totally on the sonolytic and sonophotocatalytic degradation of hydrogels and a synergy effect was calculated for combined degradation procedures (Ultrasound and Ultraviolet) in the presence of $TiO_2$ nanoparticles. $TiO_2$ sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. A kinetics model based on viscosity data was used for estimation of degradation rate constants at different conditions and a negative order for the dependence of the reaction rate on total molar concentration of (acrylic acid-co-acryl amide) hydrogels solution within the degradation process was suggested.
Keywords
(acrylic acid-co-acryl amide) hydrogels; Degradation; Sonophotocatalysis; Viscosity; $TiO_2$ nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ebrahimi, R. Influence of Ultrasonic parameters in degradation of acrylic acid co acrylamide based superabsorbent hydrogels crosslinked with NMBA. Iranian Polym. J. 2011, 43, in press.
2 van Krevelen, D. W. Properties of Polymers, 3rd ed.; Elsevier: Amsterdam, 1990.
3 Gronroons, A.; Pirkonen, P.; Heikkinen, J.; Ihalainen, J.; Mursunen, H.; Sekki, H. Ultrasonic depolymerisation of aqueous polyvinyl alcohol. Ultrasonics Sonochemistry 2001, 8, 259.   DOI   ScienceOn
4 Taghizadeh, M. T.; Asadpour, T. Effect of molecular weight on the ultrasonic degradation of poly (vinyl pyrrolidone). Ultrasonics Sonochemistry 2009, 16, 280.   DOI   ScienceOn
5 Taghizadeh, M. T.; Bahadori, A. 2009, Degradation kinetics of poly(vinylpyrrolidone) under ultrasonic irradiation. J. Polym. Res. 2009, 16, 545.   DOI   ScienceOn
6 Crum, L. A. Comments on the evolving eld of sonochemistry by a cavitation physicist. Ultrasonics Sonochemistry 1995, 2, 147.   DOI   ScienceOn
7 Stephanis, C. G.; Hatiris, J. G.; Mourmouras, D. E. The process (mechanism) of erosion of soluble brittle materials caused by cavitation. Ultrasonics Sonochemistry 1997, 4, 269.   DOI   ScienceOn
8 Mason, T. J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443.   DOI   ScienceOn
9 Mason, T. J.; Cordmas, E. D. Ultrasonic intensication of chemical processing and related operations. T. I. Chem. Eng-Lond. 1996, 74, 511.
10 Portenlanger, G.; Heusinger, H. Polymer formation from aqueous solutions of a D-glucose by ultrasound and ${\gamma}$-rays. Ultrasonics Sonochemistry 1994, 1, 125.   DOI   ScienceOn
11 Ashokkumar, M.; Grieser, F. Ultrasound assisted chemical processes. Rev. Chem. Eng. 1999, 15, 41.   DOI
12 Cains, P. W.; Martin, P. D.; Price, C. J. The use of ultrasound in industrial chemical synthesis and crystallization. 1. Applications to synthetic chemistry. Org. Proc. Res. Dev. 1998, 1, 234.
13 Wang, X.; Yao, Z.; Wang, J.; Guo, W.; Li, G. Degradation of reactive brilliant red in aqueous solution by ultraso nic cavitation. Ultrasonics Sonochemistry 2008, 15, 43.   DOI   ScienceOn
14 Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos, D. Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl. Catal. B: Environ. 2007, 74, 63.   DOI   ScienceOn
15 Stock, N. L.; Peller, J.; Vinodgopal, K.; Kamat, P. V. Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 2000, 34, 1747.   DOI   ScienceOn
16 Caddick, S. Microwave Assisted Organic Reactions. Tetrahedron 1995, 51, 10403.   DOI   ScienceOn
17 Freifelder, D.; Davison, P. F. Studies on the sonic degradation of deoxyribonucleic acid. Biophys. J. 1962, 2, 235.   DOI
18 Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a Pd (II) coordination polymer. Angew. Chem. Int. Ed. 2004, 43, 4460.   DOI   ScienceOn
19 Karthikeyan, S.; Potisek, S. L.; Piermattei, A.; Sijbesma, R. P. Highly efficient mechanochemical scission of silvercarbene coordination polymers. J. Am. Chem. Soc. 2008, 130, 14968.   DOI   ScienceOn
20 Paulusse, J. M. J.; Sijbesma, R. P. Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. Chem. Commun. 2008, 37, 4416.
21 Price, G. J. In Advances in Sonochemistry; Mason, T. J., Ed.; JAI Press: Cambridge, 1990; Vol. 1.
22 Suslick, K. S.; Price, G. Application of ultrasound to materials chemistry. J. Annu. Rev. Mater. Sci. 1999, 29, 295.   DOI   ScienceOn
23 Jellinek, H. H. G. Degradation of vinyl polymers; Academic Press: New York, 1955.
24 Price, G. J. The use of ultrasound for the controlled degradation of polymer solutions. In Advances in Sonochemistry; JAI Press, 1990.
25 Vijayalakshmi, S. P.; Madras, G. Effect of initial molecular weight and solvents on the ultrasonic degradation of poly(ethylene oxide). Polym. Degrad. Stab. 2005, 90, 116.   DOI   ScienceOn
26 Li, X.; Cui, Y. Ultraviolet-Induced Decomposition of Acrylic Acid-Based Superabsorbent Hydrogels Crosslinked with N,N-Methylenebisacrylamide. Appl. Polym. Sci. 2008, 108, 3435.   DOI   ScienceOn
27 Li, Y.; Li, J.; Guo, S.; Li, H. Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrasonyics Sonochemistry 2005, 12, 183.   DOI   ScienceOn
28 Basedow, A. M.; Ebert, K. H. Ultrasonic degradation of polymers in solution. Adv. Polym. Sci. 1977, 22, 83.   DOI
29 Daraboina, N.; Madras, G. Kinetics of the ultrasonic degradation of poly (alkyl methacrylates). Ultrasonics Sonochemistry 2009, 16, 273.   DOI   ScienceOn
30 Kauzmann, W.; Eyring, H. The Viscous Flow of Large Molecules. J. Am. Chem. Soc. 1940, 62, 3113.   DOI
31 Flosdorf, E. W.; Chambers, L. A. The chemical action of audible sound. J. Am. Chem. Soc. 1933, 55, 3051.   DOI
32 Sato, T. Effect of turnover rate on the change of concentration of an unstable compound in a dip coating bath. J. Coat. Technol. 2000, 72, 81.
33 Czechowska-Biskupa, R.; Rokita, B.; Lotfy, S.; Ulanski, P.; Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Cabohydr. Polym. 2005, 60, 175.   DOI   ScienceOn
34 Lorimer, J. P.; Mason, T. J.; Cuthbert, T. C.; Brookeld, E. A. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry, 1995, 2, 555.
35 Bradbury, J. H.; O'Shea, J. The effect of ultrasonic irradiation on proteins, J. Aust. J. Biol. Sci. 1973, 26, 583.
36 Silva, A. M. T.; Nouli, E.; Carmo-Apolinario, A. C.; Xekoukoulotakis, N. P.; Mantzavinos, D. Sonophotocatalytic/ $H_2O_2$ degradation of phenolic compounds in agro-industrial efuents. Catal. Today 2007, 124, 232.   DOI   ScienceOn
37 Thomas, B. B.; Alexander, W. J. Ultrasonic degradation of cellulose nitrate:Relation between initial and nal average and distribution of DP. J. Polym. Sci. 1955, 15, 361.   DOI
38 Price, G. J.; Smith, P. F. Ultrasonic degradation of polymer solutions-III: The effect of changing solvent and solution concentration. Eur. Polym. J. 1993, 29, 419.   DOI   ScienceOn
39 Biskup, R. C.; Rokita, B.; Lotfy, S.; Ulanski, P.; Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym. 2005, 60, 175.   DOI   ScienceOn
40 Taghizadeh, M. T.; Abdollahi, R. Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of $TiO_2$ nanoparticles. Ultrasonics Sonochemistry 2011, 18, 149.   DOI   ScienceOn
41 Mrowetz, M.; Pirola, C.; Selli, E. Degradation of organic water pollutants through sonophotocatalysi in the presence of $TiO_2$. Ultrasonics Sonochemistry 2003, 10, 247.   DOI   ScienceOn
42 Shimizu, N.; Ogino, C.; Dadjour, M. F.; Murata, T. Sonocatalytic degradation of methylene blue with $TiO_2$ pellets in water. Ultrasonics Sonochemistry 2007, 14, 184.   DOI   ScienceOn
43 Wang, J.; Pan, Z.; Zhang, Z.; Zhang, X.; Wen, F.; Ma, T.; Jiang, Y.; Wang, L.; Xu, L.; Kang, P. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrasonics Sonochemistry 2006, 13, 493.   DOI   ScienceOn
44 Harkal, U. D.; Gogate, P. R.; Pandit, A. B.; Shenoy, M. A. Ultrasonic degradation of poly(vinyl alcohol) in aqueous solution. Ultrasonics Sonochemistry 2006, 13, 423.   DOI   ScienceOn
45 Sarkar, J.; Kumar, R.; Madras, G. Ultrasonic degradation of polybutadiene and isotactic polypropylene. Polym. Degrad. Stab. 2004, 85, 555.   DOI   ScienceOn
46 Glynn, P. A. R.; Van Der Hoff, B. M. E.; Reilly, P. M.; General, A. Model for Prediction of Molecular Weight Distributions of Degraded Polymers. Development and Comparison with Ultrasonic Degradation. J. Macromol. Sci., Part A: Pure Appl. Chem. 1972, 6, 1653.   DOI
47 Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-Induced Chemical Changes in Polymeric Materials. Chem. Rev. 2009, 109, 5755.   DOI   ScienceOn
48 Taghizadeh, M. T.; Mehrdad, A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry. Ultrasonics Sonochemistry 2003, 10, 309.
49 Akyuz, A.; Catalgil-Giz, H.; Giz, A. Effect of Solvent Characteristics on the Ultrasonic Degradation of Poly (vinylpyrrolidone) Studied by On-line Monitoring. Macromol. Chem. Phys. 2009, 210, 1331.
50 Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol). Macromolecules 2005, 38, 8975.   DOI   ScienceOn
51 Domard, A.; Popa-Nita, S.; Lucas, J. M.; Ladaviere, C.; David, L. Mechanisms Involved During the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control Biomacromolecules 2009, 10, 1203.
52 Wu, T.; Zivanovic, S.; Hayes, D. G.; Weiss, J. Efcient Reduction of Chitosan Molecular Weight by High-Intensity Ultrasound: Underlying Mechanism and Effect of Process Parameters. J. Agric. Food Chem. 2008, 56, 5112.   DOI   ScienceOn
53 Madras, G.; Chattopadhyay, S. Effect of solvent on ultrasonic degradation of poly (vinyl acetate). Polym. Degrad. Stab. 2001, 71, 273.   DOI   ScienceOn
54 Nguyen, T. G.; Kausch, H. H. Mechanochemical degradation in transient elongational flow. Adv. Polym. Sci. 1992, 100, 73.   DOI
55 Lorimer, J. P.; Mason, T. J.; Cuthbert, T. C.; Brookeld, E. A. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry 1995, 2, 555.
56 Wang, S.; Gong, Q.; Liang, J. Sonophotocatalytic degradation of methyl orange by carbon nanotube/$TiO_2$ in aqueous solutions. Ultrasonics Sonochemistry 2009, 16, 205.   DOI   ScienceOn
57 Bejarano-Perez, N. J.; Suarez-Herrera, M. F. Sonophotocatalytic degradation of congo red and methyl orange in the presence of $TiO_2$ as a catalyst. Ultrasonics Sonochemistry 2007, 14, 589.   DOI   ScienceOn
58 Vinu, R.; Madras, G. Kinetics of sonophotocatalytic degradation of anionic dyes with nano-$TiO_2$. Environ. Sci. Technol. 2009, 43, 473.   DOI   ScienceOn
59 Kritikos, D. E.; Xekoukoulotakis, N. P.; Psillakis, E.; Mantzavinos, D. Hotocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water. Res. 2007, 41, 2236.   DOI   ScienceOn
60 Nakayama, K.; Ooi, T.; Kinoshita, S. Degradation of synthetic water soluble polymers by hydro oqinone per oxidase. J. Ferment. Bioeng. 1997, 84, 213.   DOI   ScienceOn
61 Aarthi, T.; Shaama, M. S.; Madras, G. Degradation of water soluble under combined ultrasonic and ultraviolet radiation. Ind. Eng. Chem. Res. 2007, 27, 6204.
62 Saien, J.; Delavari, H.; Solymani, A. R. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies, J. Hazardous Materials, 2007, 177, 1031.   DOI
63 Wang, Z. S.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q. Photoelectric conversion properties of nanocrystalline $TiO_2$ electrodes sensitizedwith. J. Phys. Chem. B 2000, 104, 9676.   DOI   ScienceOn
64 Aguado, J.; van Grieken, R.; Lopez-Munoz, M. J.; Marugan, J. Removal of cyanides in waste water by supported $TiO_2$-based photocatalysts. Catal. Today 2002, 75, 95.   DOI
65 Sullivan, C. Sonochemistry: a sound investment, Chem. Ind. 1992, 18, 365.
66 Joseph, C. G.; Gianluca, L. P.; Awang, B.; Krishnaiah, D. Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry 2009, 16, 583.   DOI   ScienceOn