Sonolysis of Trichloroethylene in the Multi Ultrasound Irradiation Reactor

다중 초음파 조사 반응조에서의 TCE의 초음파 분해

  • Lee, Min-Ju (Department of civil & Environmental Engineering, Chung-Ang University) ;
  • Oh, Je-Ill (Department of civil & Environmental Engineering, Chung-Ang University)
  • 이민주 (중앙대학교 건설환경공학과) ;
  • 오재일 (중앙대학교 건설환경공학과)
  • Received : 2009.05.14
  • Accepted : 2009.09.17
  • Published : 2009.10.31

Abstract

Sonolysis of TCE (Trichloroethylene) was performed in 584 kHz rectangular reactor. At first, the effect of acoustic power and aqueous temperature which are both important factors to operate ultrasound system on sonolysis of TCE were examined under one side irradiation condition. First degradation rate constants of TCE and chloride yields were increased with increasing acoustic power from 100 to 300 W. And increasing the aqeuous temperature resulted in the increase of first degradation rate constants of TCE and the decrease of chloride yield. Sonolysis of TCE was performed under multi ultrasound irradiation conditions that total acoustic power of 300 W was distributed according to the number of irradiation sides. First degradation rate constants of TCE followed the order 4 sides > 3 sides > 1 side > 2 sides (parallel) > 2 sides (orthogonal). When comparing the experimental results under parallel and orthogonal irradiation conditions of 2 sides with 300 and 450 W, first degradation rate constants of TCE were similar, while production rate constants of hydrogen peroxide were more higher at parallel conditions compared to orthogonal conditions.

584 kHz 정사각형 Batch형 초음파 반응조를 이용하여 TCE (Trichloroethylene)의 초음파 분해에 대한 연구를 수행하였다. 단면 조사 조건에서 초음파 시스템에서의 중요한 운전인자인 초음파 출력과 수용액 온도 조건의 영향에 대한 기초 연구를 수행하였으며, 다중 조사 조건에서의 초음파 출력 분배와 조사각에 따른 초음파 효과에 대해 고찰함으로써 제작된 반응조의 처리 효율을 검증하였다. 단면 조사 조건에서 초음파의 출력을 100에서 300 W로 단계적으로 증가시킬 때 TCE의 분해 속도 상수와 $H_2O_2$의 발생 속도 상수, 그리고 TCE의 무해화(mineralization) 정도의 판단 지표인 chloride의 발생 또한 모두 함께 증가하였다. 한편 초음파 출력 200 W 조건에서 수용액의 온도를 10에서 $30^{\circ}C$로 증가시킴에 따라 TCE 저감 속도 상수와 $H_2O_2$ 발생 속도 상수는 증가한 반면, chloride 발생은 오히려 감소하였다. 다중 조사 조건에 대한 실험 결과 300 W의 초음파 출력을 1, 2(직각), 2(정면), 3, 그리고 4면의 조사면에 따라 분배하였을 때 TCE의 분해 속도 상수는 4면 > 3면 > 단면 > 2면 정면 > 2면 직각의 순으로 조사면 수가 많아질수록 다소 증가하는 경향을 나타내었다. 그러나 최대, 최소값의 큰 차이는 나타나지 않았다. 300 W와 450 W의 출력 조건에서 2면 정면과 직각 분배 조건에 대한 실험 결과를 비교한 결과 TCE의 분해 속도 상수는 거의 비슷하였으나 $H_2O_2$는 2면 정면 조건에서 더욱 많이 발생하는 것으로 나타났다.

Keywords

References

  1. 환경부, '2007년 지하수 측정망 운영 결과 보고', (2008)
  2. U. S. Environmental Protection Agency, Technical Background Document to Support 308 Rulemaking Pursuant to the Clean Air ActCSection 112 (g). Ranking of Pollutants with 309 Respect to Hazard to Human Health, EPAB450/3-92-010, Emissions Standards Division, 310 Office of Air Quality Planning and Standards, Research Triangle Park, NC, (1994)
  3. Shemer, H., and Narkis, N., 'Trihalomethanes aqueous solutions sono-oxidation,' Water Res. 39, 2704-2710(2005) https://doi.org/10.1016/j.watres.2005.04.043
  4. Suslick, K. S., 'Sonochemistry and Sonoluminescence in Encyclopedia of Physical Science and Technology,' 17, Academic Press, San Diego(2001)
  5. Naffrechoux, E., and Chanoux, S., 'Sonochemical and photochemical oxidation of organic matter,' Ultrason. Sonochem., 7, 255-259(2000) https://doi.org/10.1016/S1350-4177(00)00054-7
  6. Peller, J., Wiest, O., and Kamat, P. V., 'Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds,' Environ. Sci. Technol, 37, 1926-1932(2003) https://doi.org/10.1021/es0261630
  7. Maezawa, A., Nakadoi, H., Suzuki, K., Furusawa, T., Suzuki, Y., and Uchida, S., 'Treatment of dye wastewater by using photo-catalytic oxidation with sonication,' Ultrason. Sonochem. 14, 615-620(2007) https://doi.org/10.1016/j.ultsonch.2006.11.002
  8. Aarthi, T., M. S. Shaama, et al. 'Degradation of Water Soluble Polymers under Combined Ultrasonic and Ultraviolet Radiation,' Ind. Eng. Chem. Res., 46(19): 6204-6210(2007) https://doi.org/10.1021/ie070287+
  9. Feng, R., Zhao, Y., Zhu, C., and Mason, T. J., 'Enhancement of ultrasonic cavitation yield by multi-frequency sonication,' Ultrason. Sonochem., 9, 231-236(2002) https://doi.org/10.1016/S1350-4177(02)00083-4
  10. Sivakumar, M., Tatake, P. A., and Pandit, A. B., 'Kinetics of pnitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system, 'Chem. Eng. J., 85, 327-338(2002) https://doi.org/10.1016/S1385-8947(01)00179-6
  11. Gogate, P., Mujumdar, S., and Pandit, A. B., 'Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction,' Adv. Env. Res., 7, 283-299(2003) https://doi.org/10.1016/S1093-0191(01)00133-2
  12. Wang, S., Huang, B., Wang, Y., and Liao, L., 'Comparison of enhancement of pentachlorophenol sonolysis at 20kHz by dualfrequency sonication,' Ultrason. Sonochem., 13, 506-510(2006) https://doi.org/10.1016/j.ultsonch.2005.10.004
  13. Liu, H.-L. and Hsieh, C. M., 'Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation,' Ultrason. Sonochem., 16, 431-438(2009) https://doi.org/10.1016/j.ultsonch.2008.08.009
  14. Kormann, C., Bahnemann, D. W., and Hoffman, M. R., 'Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand,' Environ. Sci. Tech., 22, 798-806(1988) https://doi.org/10.1021/es00172a009
  15. Mason, T. J., and Lorimer, J. P., Applied sonochemistry, Wiley-VCH Weinheim.(2002)
  16. Kang, J. W., Hung, H. M., Liin, A., and Hoffman, M. R., 'Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: the role of $O_{3},\;H_{2}O_{2}$, frequency, and power density,' Environ. Sci. Technol., 33, 3199-3205(1999) https://doi.org/10.1021/es9810383
  17. Kubo, M., Onodera, R., Shibasaki-Kitakawa, N., Tsumoto, K., and Yonemoto, T., 'Kinetics of ultrasonic disinfection of Escherichia coli in the presence of titanium dioxide particles,' Biochem. Prog., 21, 897-901(2005)
  18. Appaw, C., and Adewuyi, Y. G., 'Destruction of carbon disulfide in aqueous solutions by sonochemical oxidation,' J. Hazard. Mater., 90, 237-249(2002) https://doi.org/10.1016/S0304-3894(01)00350-8
  19. F${\i}$nd ${\i}$k, S., $G{\ddot{u}}nd{\ddot{u}}z$, G., and $G{\ddot{u}}nd{\ddot{u}}z$, E., 'Direct sonication of acetic acid in aqueous solutions,' Ultrason. Sonochem., 13, 203-207(2006) https://doi.org/10.1016/j.ultsonch.2005.11.005
  20. Neppolian, B., Jung, H., Choi, H., Lee, J. H., and Kang, J., 'Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion,' Water Res., 36, 4699-4708(2002) https://doi.org/10.1016/S0043-1354(02)00211-7
  21. Neppolian, B., Park, J. S., and Choi, H., 'Effect of Fenton-like oxidation on enhanced oxidative degradation of parachlorobenzoic acid by ultrasonic irradiation,' Ultrason. Sonochem., 11, 273-279(2004) https://doi.org/10.1016/j.ultsonch.2003.11.001
  22. Naddeo, V., Belgiorno, V., and Napoli, R. M. A., 'Behaviour of natural organic mater during ultrasonic irradiation,' Desalination, 210, 175-182(2007) https://doi.org/10.1016/j.desal.2006.05.042
  23. Jiang, Y., Petrier, C., and Waite, T. D., 'Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions,' Ultrason. Sonochem., 9, 317-323(2002) https://doi.org/10.1016/S1350-4177(02)00085-8
  24. Vassilakis, C., Pantidou, A., Psillakis, E., Kalogerakis, N., and Mantzavinos, D., 'Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability,' Water Res., 38, 3110-3118(2004) https://doi.org/10.1016/j.watres.2004.04.014
  25. Fischer, C. H., Hart, E. J., and Henglein, A., 'Ultrasonic irradiation of water in the presence of 18, $18O_{2}$: isotope exchange and isotopic distribution of $H_{2}O_{2}$,' J. Phys. Chem., 90, 1954-1956(1986) https://doi.org/10.1021/j100400a043
  26. Adewuyi, Y. G., 'Sonochemistry: environmental science and engineering applications,' Ind. Eng. Chem. Res., 40, 4681-4715(2001) https://doi.org/10.1021/ie010096l
  27. Destaillats, H., Li, T. W. A., and Hoffman, M. R., 'Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions,' Environ. Sci. Technol., 35, 3019-3024(2001) https://doi.org/10.1021/es0018926
  28. Jiang, Y., Petrier, C., and Waite, T. D., 'Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency,' Ultrason. Sonochem., 13, 415-422(2006) https://doi.org/10.1016/j.ultsonch.2005.07.003
  29. Lim, M. H., Kim, S. H., Kim, Y. U., and Khim, J., 'Sonolysis of chlorinated compounds in aqueous solution,' Ultrason. Sonochem., 14, 93-98(2007) https://doi.org/10.1016/j.ultsonch.2006.03.003
  30. Manousaki, E., Psillakis, E., Kalogerakis, N., and Mantzavinos, D., 'Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation,' Water Res., 38, 3751-3759(2004) https://doi.org/10.1016/j.watres.2004.06.002
  31. Emery, R. J., Papadaki, M., Freitas dos Santos, L. M., and Mantzavinos, D., 'Extent of sonochemical degradation and change of toxicity of a pharmaceutical precursor (triphenylphosphine oxide) in water as a function of treatment conditions,' Environ. Int., 31, 207-211(2005) https://doi.org/10.1016/j.envint.2004.09.017