• Title/Summary/Keyword: Ultrasonic generator

Search Result 131, Processing Time 0.035 seconds

A Study on Ultrasonic Transducer displacement generator by Frequency Phase modulation (주파수 위상 변조에 의한 초음파 탐촉자 변위 발생기에 관한 연구)

  • 김정래
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.36-41
    • /
    • 2002
  • This study was carried out develope a ultrasonic transducer displacement generator through 26KHz and 38KHz of the frequency phase modulation on the ultrasonic transducer. This system was producted a power output generation such as 100W, 300W, 400W and 600W. Ultrasonic power output had a change of time. We made use of a Thiram hydration and detected it measurement by the ACAO method. It was to decide the result of ultrasonic power supply for time duration and the result of comparison in the 26KHz & 38KHz by UV/VIS spectrophotometer.

  • PDF

Non-destructive Evaluation to Assess Leak of Bond in Brazed Large Generator ″ C″ -Coil by Ultrasonic Retro-Reflection (초음파 Retro-Reflection에 의한 대형 발전기용 C-Coil Brazed부의 비파괴적 평가)

  • 성운학;양병일;김정태
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.305-307
    • /
    • 2004
  • One set of rotor coils is required per each large generator rotor assembly, Rotors consist of two directly opposing poles. Each pole requires from 5 to 9 coils. Each coil is made up of two halves identified on the connection end. These coil halves will be joined together by butt brazing process during subsequent rotor assembly. Each half coil is made up of typically 4 to 9 layers of copper conductors. Because of Generator rotor is rotated very high speed with 3,600RPM, the quality soundness of brazed joints is very important at each coil. But, it is very difficult to be optimized non-destructive evaluation, because c-coil has the long shape and evaluation is to be done assembled condition. In this paper introduce newly developed inspection process and acceptance standards for the ultrasonic inspection of " C" coil butt braze. This inspection system is a semi-automatic ultrasonic flaw detector with data acquisition and retention capable of assessing the relative lack of bond of brazed butt joints

  • PDF

Estimation and Analysis of Transport Direction according to Traveling Wave in Ultrasonic Transport System (초음파 이송시스템의 진행파에 따른 이송 방향 예측 및 해석)

  • Jeong, Sang-Hwa;Kim, Gwang-Ho;Shin, Sang-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.30-37
    • /
    • 2008
  • An object transport system is driven by a conveyor belt system or a magnetic levitation system. It is an indispensable device in many fields and especially it is very important in the factory automation. However, the conventional transport system can damage precision optical components by the contact force and destroy the inner structure of semiconductor by the magnetic field. The new transport system for transporting without damage is required. The ultrasonic transport system is a device that transports objects on the elastic body using ultrasonic wave. In this paper, an object transport system using the ultrasonic wave is developed for transporting precision elements without damage. Traveling waves are generated by the ultrasonic wave generator fixed in both ends of the beam. The traveling wave of the ultrasonic transport system is theoretically analyzed. Transport direction of the object is examined according to phase difference and frequency. The theoretical results are verified by experiments.

Piezoelectric and Dielectric Properties of PMN-PNN-PZT Ceramics for Ultrasonic Generator with Calcination Temperature (하소온도변화에 따른 초음파절삭기용 PMN-PNN-PZT 세라믹스의 압전 및 유전 특성)

  • Yoo, Ju-Hyun;Kim, Seung-Won;Seo, Dong-Hi;Lee, Eun-Sup;Choi, Nak-Gu;Jeong, Hoy-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.152-156
    • /
    • 2017
  • In this paper, $Pb(Mn_{1/3}Nb_{2/3})_{0.07}(Ni_{1/3}Nb_{2/3})_{0.10}(Zr_{0.5}Ti_{0.5})_{0.83}O_3$ ceramics were fabricated by the conventional solid state method to obtain excellent dielectric properties for ultrasonic generators. The effects of 2nd calcination temperature on their microstructure and piezoelectric properties were systematically investigated. The tetragonality increased in the ceramics when 2nd calcination temperature increased to the optimized temperature at $750^{\circ}C$. At that temperature, excellent physical properties ($d_{33}=352\;pC/N$, ${\varepsilon}_r=1,687$, $k_p=0.570$, $Q_m=1,640$) were obtained for ultrasonic generator application.

A Study of the High Efficiency and Stability in Ultrasonic Generation circuit (초음파발생회로의 고효율성과 안정성에 대한 연구)

  • 이선희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2000
  • The generation of the intensive ultrasonic waves depend mainly on the energy conversion efficiency depending on high frequency oscillation of the generator and the control performance of stable output depending on load variation, respectively. In this dissertation, a new configuration of ultrasonic generator is specially proposed and designed for improving both efficiency and stability. The generating frequency is turned by a PLL. which is controlled through the detection on phase difference between outputs and currents of the loads and the output amplitude of MOSFET, Q1 are controlled by their products through the multiplier, which results in the control of the amplitude of voltage controlled oscillation. And finally, the proposed and designed ultrasonic generator is composed by the combination of the function in mentioned above. the analysis results of the proposed circuit shows a good agreement between simulations and experiments.

  • PDF

Ultrasonic Engancement of Flow in Clayey Sands (점토질 모래에서의 Ultrasonic을 이용한 투수성의 증진)

  • 이광열
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 1993
  • Remediation technology becomes an issue in environmental engineering. The vibro-recovery technique is one of popular means to remove pollutants from contaminated soils and groundwater. Using Ultrasonic excitation in soil-fluid medium, it was found that removal efficiency in a mechanical effects was significant. In this paper, therefore, laboratory experiments were conducted on clayey sand soil columns using a probe-type ultrasonic processor. Ultrasonic treatment with simultaneous pumping enhances dislodgement of clay particles, and ultrasonic excitation reduced the proportions of finer particles and thus result in increased hydraulic conductivity significantly. Also, the results provided the changes in grain size distribution curve of the soil due to ultrasonic excitation. The results indicated that the maximum size of particles mobilized by Ultrasonic is about 0.004mm and particles in the size range from 0.04mm to 1.0mm were subjected to fracturing. The economic feasibility of Ultrasonic implementation is considered in power requirement of the generator and maintenance of the horn. At a specified amplitude of vibrations, the power requirement of the generator depends on overburden pressure of the horn, temperature and viscosity of fluid in the soil medium. For comparisons, the requirement of a one inch and two inch diameter horn sonicators are compared with the power required for pumping water from different depths.

  • PDF

Study on the Effects of Ultrasonic Wave for the Effective Hydrogen Generation by Electrical Discharge Plasma Process

  • Park Jae-Youn;Cong Nghi-Vu;Han Sang-Bo;Kim Jong-Seok;Park Sang-Hyun;Lee Hyun-Woo;Lee Su-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2006
  • The research was tried to investigate the hydrogen generation from water by the pulsed power plasma process. Hydrogen was generated by way of the electrical pulse power discharge process with the ultrasonic wave. The yield on the hydrogen generation was also studied with and without operating the ultrasonic generator, in which the applied high voltage was varied from 10 kV to 15 kV. Nitrogen and argon gases were used as working gases. As the results, the generation yield using the pure nitrogen gas is better than argon and mixed gases such as argon and nitrogen. Hydrogen concentration are significantly increased when the ultrasonic generator was operated with the electrical discharge simultaneously. It is increased with increasing the applied ultrasonic level as well.

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus (액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성)

  • Kang, Yun-Chan;Ju, Seo-Hee;Koo, Hye-Young;Kang, Hee-Sang;Park, Seung-Bin
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.