• 제목/요약/키워드: Ultrasonic dispersion

검색결과 167건 처리시간 0.029초

고에너지 물질 시뮬란트의 분산도의 In-Line 모니터링 (In-Line Monitoring the Dispersion of Highly Energetic Material Simulant)

  • 이상묵;홍인권;안영준;이재욱
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.272-277
    • /
    • 2014
  • 고온용 초음파 측정 시스템을 장착한 이축압출기를 이용하여 고에너지 물질 시뮬란트의 분산도를 실시간으로 모니터링하는 연구를 하였다. 결합제 수지 및 충전제로 ethylene vinyl acetate(EVA)와 Dechlorane plus 25를 각각 사용하여 고에너지 물질 시뮬란트 현탁계를 구성하였다. 충전 부피분율이 증가함에 따라 현탁계의 초음파 속도는 전혀 변화를 보이지 않았으나 초음파 감쇠는 선형적으로 감소하였는 바 고르게 분산된 현탁계를 대상으로 초음파 감쇠를 측정하면 충전함량을 추정할 수 있음을 확인하였다. 또한 60 v% 이상으로 충전된 고농축 현탁계에서는 반복 압출실험을 수행한 결과 초음파 감쇠의 편차가 감소하여 직선값에 접근하는 경향을 보이는 바 분산도의 증가하는 것을 알 수 있었다. 따라서 on-line 및 in-line으로 측정된 초음파 감쇠와 off-line으로 SEM 및 Image Analyzer 그리고 열중량분석을 병행함으로써 분산도 및 충전 함량을 평가할 수 있을 것으로 사료된다.

이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향 (Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing)

  • 김진연;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제56권6호
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

비선형 전파지연의 보정에 의한 음속의 측정법 (Measurement Method of Ultrasonic Velocity by Correction of Non-Linear Propagation Delay)

  • 고덕영;최종호;이종악
    • 대한전자공학회논문지
    • /
    • 제26권7호
    • /
    • pp.98-105
    • /
    • 1989
  • 본 논문에서는 생체 조직을 정량화하기 위한 음속의 측정법을 제안하였다. 기존의 음속 측정법에서는 주파수 분산의 영향이 무시되고 있으나, 주파수 분산은 전파 지연에 영향을 미친다. 따라서 진폭 스펙트럼으로부터 최소 위상 스펙트럼을 유도하여 주파수 분산을 정량화하였으며, 주파수 분산을 제거하기 위한 신호 분해법을 제안하였다. 또한 컴퓨터 시뮬레이션을 통하여 제안된 이론의 유효성분을 확인하였다.

  • PDF

표면 SH파 모드의 분산특성 해석과 그 응용 (A Study on the Application and Dispersion Characteristics Analysis of Surface SH-wave Mode)

  • 이상용;박익근;윤종학;노승남;안형근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.61-65
    • /
    • 2001
  • A new flaw detection technique using by SH angle beam method has been discussed. The SH-wave is horizontally polarized shear wave and the surface SH wave has a characteristic of traveling along near surface layer. The surface SH wave technique is valuable for the detection of fatigue cracks at fillet weld heels which cannot be detected by other ultrasonic technique such as angle beam technique and The dispersion curves of it has simple characterization. In this work, using these beneficial chraterization, quality evaluation of spot weld with ultrasonic sound intensity of SH-wave passing through nugget area of spot weld are verified experimentally.

  • PDF

CMP 슬러리의 분산성 향상에 관한 연구 (A Study on tole Improvement of the Slurry Dispersibility in CMP)

  • 조성환;김형재;김호윤;서헌덕;김경준;정해도
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1535-1540
    • /
    • 2001
  • This study presents the possibility of scratch reduction on wafer in CMP by applying the ultrasonic and megasonic energy into the slurry which might contain large abrasive particles. Experiments were conducted to verify the dispersion ability of agglomerated particles by applying ultrasonic, megasonic waves and analyze the particle distribution of used slurry in case, of sonic energy assisted or none. And the dispersion stability of megasonic waves was investigated through the experiment of stability of the dispersed slurry, Finally, to confirm that the distribution of particles in slurry by ultrasonic waves was actually related to scratches on wafer when CMP was done, tungsten blanket wafer was processed, by CMP to compare and investigate scratches on wafer.

Ultrasonic electrochemical deposition and characterization of Ni-SiC nanocomposite coatings

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.58-58
    • /
    • 2011
  • Nickel-ceramics nanocomposite coatings can be applied as the wear resistance coating, corrosion protection of underlying materials, and decorative coatings. Hence, Nickel based nanocomposite coatings, especially Ni-SiC, have been extensively studied in recent years. However, more often agglomeration problem of the nanoparticles in the nickel matrix can cause deterioration of the mechanical properties rather than improvement. The homogeneous distribution of the nanoparticles in the matrix coating is still being challenging. In this experiment, electrochemical deposition of Ni-SiC composite coating was done in presence of ultrasound. The effects of different ultrasonic powers and frequencies on the nanoparticle dispersion were studied. The electrodeposition was carried out in nickel sulfamate bath by applying pulse current technique. Compared to the conventional mechanical stirring technique to prevent nanoparticles agglomeration and sedimentation during composite electrodeposition, the aid of ultrasonic dispersion along with mechanical stirring has been found to be more effective not only for the nanoparticles dispersion, but also for the mechanical properties of the electrodeposited coatings. Nanoparticles were found to be distributed homogeneously with reduced agglomeration. The microstructure of the composite coating has also been changed, allowing some random orientations of the nickel crystallite grain growths, smooth surface, and finer grains. As a consequence, better mechanical properties of the composites were observed.

  • PDF

액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성 (The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus)

  • 강윤찬;주서희;구혜영;강희상;박승빈
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles

  • Kwon, Hansang;Park, Jehong;Leparoux, Marc
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.216-222
    • /
    • 2017
  • Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.

레일 초음파의 분산 특성 해석 (Analysis of Dispersion Characteristics of Guided Waves in Rails)

  • 강부병
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1257-1264
    • /
    • 2011
  • 짧은 시간에 장거리를 전파하는 유도 초음파의 특성을 이용하면 빠르게 넓은 영역의 검사가 가능하다. 그러나 레일의 경우와 같이 단면이 단순하지 않고 임의의 형상을 갖는 구조물의 경우 초음파 전달시 발생하는 분산 특성이나 다수의 모드의 발생으로 초음파 신호의 분석에 어려움을 겪는다. 따라서 실용적인 유도 초음파 검사 시스템을 개발하기 위해서는 먼저 레일내를 전파하여 전달되는 초음파의 거동특성을 이해하여야 한다. 특히 레일내를 전파하는 초음파의 분산특성은 필수적으로 확인되어야 할 특성이다. 본논문에서는 SAFE법을 활용하여 KS60 레일내를 전파하는 초음파의 분산곡선을 구하는 방법을 소개하고 유도초음파를 활용한 레일 검사의 가능성에 대하여 살펴보았다.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.