• Title/Summary/Keyword: Ultrasonic absorption

Search Result 85, Processing Time 0.023 seconds

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Experimental Investigation for the Attenuation Coefficient of Ultrasonic Guided Wave (유도초음파의 감쇠계수에 대한 실험적 고찰)

  • Lee, Dong-Jin;Cho, Youn-Ho;Lee, Joon-Hyun;Shin, Dong-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2009
  • In general, ultrasonic guided wave techniques that used for an evaluation of the internal defect have been applied without considering energy loss. It can be found out that the significant attenuation is observed in the signal of structure with defect by the scattering and absorption. Even in the signal acquired from defect-free structure, this attenuation can be also significant. Therefore, it is very essential to determine the Lamb wave propagation characteristics depending on modes because the dispersibility of Lamb wave can be easily influenced by the attenuation effect with frequency and thickness. For this reason, changing the propagation distance, attenuation coefficient of each Lamb wave mode needs to be investigated by the contact pitch-catch method with PZT(piezoelectric) sensors. In this paper, the experimental attenuation coefficient is measured by choosing the following three different variables; mode, thickness and plate materials. As a result, experimental attenuation coefficient is obtained as the function of variables.

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

Evaluation of Oxidation Efficiency of Aromatic Volatile Hydrocarbons using Visible-light-activated One-Dimensional Metal Oxide Doping Semiconductor Nanomaterials prepared by Ultrasonic-assisted Hydrothermal Synthesis (초음파-수열합성 적용 가시광 활성 일차원 금속산화물 도핑 반도체 나노소재를 이용한 방향족 휘발성 탄화수소 제어효율 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.967-974
    • /
    • 2018
  • In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using $WO_3$-doped $TiO_2$ nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of $WO_3$ into $TiO_2$ nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

Aseptic Germination of F1 Hybrid Seed by Inter-species Pollination of Calanthe discolor Lindl. and C. discolor for. Sieboldii (Decne.) Ohwi (새우난초(Calanthe discolor Lindl.)와 금새우난초[C. discolor for. sieboldii (Decne.) Ohwi]의 종간교배에 의한 1대잡종 종자의 기내무균 발아)

  • Kim, Kwang-Soo;Kim, Jong-Sun;Park, Jong-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.4
    • /
    • pp.341-345
    • /
    • 2008
  • Two orchid species of Calanthe discolor Lindl. and C. discolor for. sieboldii (Decne.) Ohwi, which have different form flower color and size. They were crossed in mid April by artificial pollination, and the F1 hybrid seeds were collected mid October. Germination of seeds was investigated on pre-treatment of seeds and under the various environmental conditions. Germination was promoted by moisture absorption and ultrasonic treatment of seeds. Dark culture of F1 hybrid seeds enhanced germination and protocorm formation, and development into seedlings compared with light culture. Although, plant growth regulators such as NAA and BA had a slightly promotive effect on seed germination and protocorm growth, regenerated seeding were showed abnormal growth patterns. Regenerated F1 hybrid plantlets were successfully transferred to pot.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders

  • Chang, Shu-Chuan;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.311-319
    • /
    • 2018
  • This study used a volumetric method for design. The control group used waste Liquid Crystal Displayplay (LCD) glass powder to replace cement (0%, 10%, 20%, 30%), and the PZT group used Pd-Zr-Ti piezoelectric (PZT) powder to replace 5% of the fine aggregate to make cement mortar. The engineering and the mechanical and electricity properties were tested; flow, compressive strength, ultrasonic pulse velocity (UPV), water absorption and resistivity (SSD and OD electricity at 50 V and 100 V) were determined; and the correlations were determined by linear regression. The compressive strength of the control group (29.5-31.8 MPa) was higher than that of the PZT group (25.1-29 MPa) by 2.8-4.4 MPa at the curing age of 28 days. A 20% waste LCD glass powder replacement (31.8 MPa) can fill up finer pores and accelerate hydration. The control group had a higher 50 V-SSD resistivity ($1870-3244{\Omega}.cm$), and the PZT group had a lower resistivity ($1419-3013{\Omega}.cm$), meaning that the resistivity increases with the replacement of waste LCD glass powder. This is because the waste LCD glass powder contains 62% $SiO_2$, which is a low dielectric material that is an insulator. Therefore, the resistivity increases with the $SiO_2$ content.

An Experimental Study on Recycled Aggregate Concrete for Artificial Fishing Reefs (인공어초 개발을 위한 재생골재 콘크리트의 실험적 연구)

  • 홍종현;김문훈;우광성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.16-22
    • /
    • 2003
  • The mechanical characteristics of newly recycled aggregate concrete on the basis of the proposed mix design model have been studied to develop the precast artificial fishing reefs. In the first task, the experimental test for the recycled aggregates taken from Jeju Island has been carried out to verify the material properties in terms of specific gravity, percentage of solids, absorption and abrasion of coarse aggregates. In the second task, the experimental parameters of newly recycled aggregate concrete are investigated to meet with the requirements of guidelines with respect to slump, unit weight, pH, ultrasonic velocity, void ratio, and compressive strength which are made of sea-shore sand ad slag cement. The natural aggregate and polypropylene fiber are added to newly recycled aggregate concrete to improve the compressive strength and quality. The optimal mix proportions for compressive strength are W/C=30%, S/a=15%, NA/G=50% in porous concrete case, W/C=40%, S/a=45% in plain concrete case, and W/C=40%, S/a-45%, PF=1.0kg/㎥ in fiber reinforced concrete case.