DOI QR코드

DOI QR Code

초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation

  • 김정현 (서울과학기술대학교 신소재공학과) ;
  • 류철희 (서울과학기술대학교 신소재공학과) ;
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 최요민 (한국산업기술시험원 시스템에너지본부 재료기술센터) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Kim, Jeong Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ryu, Cheol-Hui (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ji, Myungjun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Yomin (Material Technology Center, System & Energy Division, Korea Testing Laboratory) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2021.04.18
  • 심사 : 2021.04.22
  • 발행 : 2021.04.28

초록

In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

키워드

과제정보

이 연구는 서울과학기술대학교 교내연구비의 지원으로 수행되었습니다.

참고문헌

  1. B. Liu, J. Li, W. Yang, X. Zhang, X. Jiang and Y. Bando: Small, 13 (2017) 1701998. https://doi.org/10.1002/smll.201701998
  2. L. W. Yin and S. T. Lee: Nano Lett., 9 (2009) 957. https://doi.org/10.1021/nl802823d
  3. B. Liu, Y. Bando, L. Liu, J. Zhao, M. Masanori, X. Jiang and D. Golberg: Nano Lett., 13 (2013) 85. https://doi.org/10.1021/nl303501t
  4. J. N. Hart and N. L. Allan: Adv. Mater., 25 (2013) 2989. https://doi.org/10.1002/adma.201300612
  5. Z. Deng, H. Yan and Y. Liu: J. Am. Chem. Soc., 131 (2009) 17744. https://doi.org/10.1021/ja908408m
  6. Y. Wang, J. Xu, P. Ren, Q. Zhang, X. Zhuang, X. Zhu, Q. Wan, H. Zhou, W. Hu and A. Pan: Phys. Chem. Chem. Phys., 15 (2013) 2912. https://doi.org/10.1039/c2cp43718j
  7. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen: J. Am. Chem. Soc., 127 (2005) 8286. https://doi.org/10.1021/ja0518777
  8. T. Hisatomi, J. Kubota and K. Domen: Chem. Soc. Rev., 43 (2014) 7520. https://doi.org/10.1039/C3CS60378D
  9. J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou: J. Mol. Catal. A: Chem., 325 (2010) 48. https://doi.org/10.1016/j.molcata.2010.03.029
  10. A. Wu, J. Li, B. Liu, W. Yang, Y. Jiang, L. Liu, X. Zhang, C. Xiong and X. Jiang: Dalton Trans., 46 (2017) 2643. https://doi.org/10.1039/c6dt04428j
  11. K. Lee, B. M. Tienes, M. B. Wilker, K. J. Schnitzenbaumer and G. Dukovic: Nano Lett., 12 (2012) 3268. https://doi.org/10.1021/nl301338z
  12. C. H. Chuang, Y. G. Lu, K. Lee, J. Ciston and G. Dukovic: J. Am. Chem. Soc., 137 (2015) 6452. https://doi.org/10.1021/jacs.5b02077
  13. K. Lee, Y. G. Lu, C. H. Chuang, J. Ciston and G. Dukovic: J. Mater. Chem. A, 4 (2016) 2927. https://doi.org/10.1039/C5TA04314J
  14. J. Li, B. Liu, W. Yang, Y. Cho, X. Zhang, B. Dierre, T. Sekiguchi, A. Wu and X. Jiang: Nanoscale, 8 (2016) 3694. https://doi.org/10.1039/C5NR08663A
  15. K. Maeda, K. Teramura and K. Domen: J. Catal., 254 (2008) 198. https://doi.org/10.1016/j.jcat.2007.12.009
  16. Y. Asakura, Y. Nishimura, Y. Masubuchi and S. Yin: Eur. J. Inorg. Chem., 2019 (2019) 1999. https://doi.org/10.1002/ejic.201900045
  17. Y.-L. Hu, S. Wang, Z. Zhang, Q. Luo, S. Xiang, Y. Deng, H. Ji, J. Huang, L. Sun, D. Wang and T. Ma: Inorg. Chem., 59 (2020) 7012. https://doi.org/10.1021/acs.inorgchem.0c00513
  18. Y. Hwangbo and Y.-I. Lee: J. Alloys Compd., 771 (2019) 821. https://doi.org/10.1016/j.jallcom.2018.08.308
  19. J.-H. Yoo, M. Ji, J. H. Kim, C.-H. Ryu and Y.-I. Lee: J. Photochem. Photobiol. A: Chem., 401 (2020) 112782. https://doi.org/10.1016/j.jphotochem.2020.112782
  20. J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039. https://doi.org/10.1002/adma.200904093
  21. Y. Choi and Y.-I. Lee: J. Korean Ceram. Soc., 55 (2018) 261. https://doi.org/10.4191/kcers.2018.55.3.03
  22. M.-J. Ji, J.-H. Yoo and Y.-I. Lee: J. Korean Powder Metall. Inst., 25 (2018) 482. https://doi.org/10.4150/KPMI.2018.25.6.482
  23. Z. Galazka, S. Ganschow, R. Schewski, K. Irmscher, D. Klimm, A. Kwasniewski, M. Pietsch, A. Fiedler, I. Schulze-Jonack, M. Albrecht, T. Schroder and M. Bickermann: APL Mater., 7 (2019) 022512. https://doi.org/10.1063/1.5053867
  24. P. Kubelka and F. Munk: Z. Tech. Phys., 12 (1931) 59.