• Title/Summary/Keyword: Ultrasonic absorption

Search Result 86, Processing Time 0.027 seconds

Evaluation of Dispersion Stability and Absorption Performance Enhancement of Binary Nanoemulsion Fluids (이성분 나노에멀전 유체의 분산안정성 및 흡수성능 촉진실험)

  • Lee, Jin-Ki;Kim, Young-Jin;Shin, Myung-Chul;Kim, Se-Won;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.895-900
    • /
    • 2012
  • This paper aims to examine the effect of nanodroplets on pool-type absorption heat transfer enhancement and to find the relationship between the dispersion stability and the absorption performance. The concentrations of oil and surfactant are considered as the key parameters. $C_{12}E_4$ and Tween20 are used as the surfactants and N-decane oil is added to the $NH_3/H_2O$ solution to make the binary nanoemulsion fluids. Binary nanoemulsion fluids are dispersed by the ultrasonic vibrator and the stirrer under specific conditions. The dispersion stability of binary nanoemulsion fluids for each oil concentrations is evaluated from the droplet size and Tyndall effect analysis. The absorption performance of binary nanoemulsion fluids is compared with the result of dispersion stability. In addition, it is found that the binary nanoemulsion fluid is a strong candidate as a new working fluid for absorption applications.

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

Influence of palm oil fuel ash on behaviour of green high-performance fine-grained cement mortar

  • Sagr, Salem Giuma Ibrahim;Johari, M.A. Megat;Mijarsh, M.J.A.
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.121-146
    • /
    • 2022
  • In the recent years, the use of agricultural waste in green cement mortar and concrete production has attracted considerable attention because of potential saving in the large areas of landfills and potential enhancement on the performance of mortar. In this research, microparticles of palm oil fuel ash (POFA) obtained from a multistage thermal and mechanical treatment processes of raw POFA originating from palm oil mill was utilized as a pozzolanic material to produce high-performance cement mortar (HPCM). POFA was used as a partial replacement material to ordinary Portland cement (OPC) at replacement levels of 0, 5, 10, 15, 20, 25, 30, 35, 40% by volume. Sand with particle size smaller than 300 ㎛ was used to enhance the performance of the HPCM. The HPCM mixes were tested for workability, compressive strength, ultrasonic pulse velocity (UPV), porosity and absorption. The results portray that the incorporation of micro POFA in HPCMs led to a slight reduction in the compressive strength. At 40% replacement level, the compressive strength was 87.4 MPa at 28 days which is suitable for many high strength applications. Although adding POFA to the cement mixtures harmed the absorption and porosity, those properties were very low at 3.4% and 11.5% respectively at a 40% POFA replacement ratio and after 28 days of curing. The HPCM mixtures containing POFA exhibited greater increase in strength and UPV as well as greater reduction in absorption and porosity than the control OPC mortar from 7 to 28 days of curing age, as a result of the pozzolanic reaction of POFA. Micro POFA with finely graded sand resulted in a dense and high strength cement mortar due to the pozzolanic reaction and increased packing effect. Therefore, it is demonstrated that the POFA could be used with high replacement ratios as a pozzolanic material to produce HPCM.

A Study on Absorbing Boundaries for Wave Propagation in Semi-Infinite Elastic Media (반무한 영역에서의 탄성파 진행문제를 위한 흡수경계에 관한 연구)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.451-457
    • /
    • 2000
  • In many dynamic problems such as foundation vibrations ultrasonic nondestructive evaluation and blasting analysts are confronted with the problem of wave propagation in an infinite or semi-infinite media. In order to simulate this situation by a finite analytical model provisions must be made to absorb the stress waves arriving at the boundary. Absorbing boundaries are mathematical artifacts used to prevent wave reflections at the boundaries of discrete models for infinite media under dynamic loads. An analytical study is carried out to examine the effectiveness of Lysmer-Kuhlemeyer model one of the most widely used absorbing boundaries. Validity of the absorbing boundary conditions suggested by Lymer-Kuhlemeyer is examined by adopting the solution of Ewing et al. to the problem of plane waves from a harmonic normal force on the surface of an elastic half-space. The Ewing's problem is than numerically simulated using the finite element method on a semi-circular mesh with and without absorbing boundaries which are represented by viscous dashpots. The absorption ratios are calculated by comparing the displacements at the absorbing boundaries to those at the free field without absorbing boudaries.

  • PDF

Strength and durability characteristics of bricks made using coal bottom and coal fly ash

  • Ashish, Deepankar Kumar;Verma, Surender Kumar;Singh, Joginder;Sharma, Namesh
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.407-422
    • /
    • 2018
  • The study evaluates properties of brick having coal ash and explores the possibility of utilization of coal bottom ash and coal fly ash as an alternative raw material in the production of coal ash bricks. Lower cement content was used in the investigations to attain appropriate strength and prohibit high carbon content that is cause of environmental pollution. The samples use up to 7% of cement whereas sand was replaced with bottom ash. Bricks were tested for compressive strength, modulus of rupture, ultrasonic pulse velocity (UPV), water absorption and durability. The results showed mix proportions of bottom ash, fly ash and cement as 1:1:0.15 i.e., M-15 achieved optimum values. The coal ash bricks were well bonded with mortar and could be feasible alternative to conventional bricks thus can contribute towards sustainable development.

A Study on Characteristics Analysis of Low Velocity Impact Response of CF/Epoxy Composite Plates (CF/Epoxy 복합적층판의 저속충격 특성평가에 관한 연구)

  • 임광희;박노식;김영남;김정호;김선규;심재기;양인영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.85-88
    • /
    • 2002
  • We have implemented a system of falling weight impact tester. Absorbed energy of orthotropic composites with using T300 fiber, which are composed of the same fiber and stacking number is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of orthotropic composites with using T300 fiber, which are composed of stacking number and orientation became more than that of T700 fiber specimen; however great change doesn't show in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses was evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

  • PDF

Ultrasonic Velocity and Absorption Mesurements in Gel of Proteins (초음파에 의한 단백질 gel화의 연구)

  • 김정구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.29-34
    • /
    • 1998
  • Egg white의 gel화에 따른 음속과 흡수의 변화가 60와 75$^{\circ}C$에서 크게 나타난 것이 egg white의 어느 단백질 성분에 의한 것인가를 조사하기 위해 egg white의 주요한 단백질 성분인 obalbumin, conalbumin, ovomucoid protein에 대해 gel화에 따른 음속 및 흡수의 변화를 온도 10-95$^{\circ}C$의 범위에서 초음파pulse법을 사용하여 측정하였다. Ovalbumin는 7$0^{\circ}C$, conalbumin는 5$0^{\circ}C$에서 gel화가 시작되었고 ovomucoid는 측정온도범위내에서는 gel화가 진행되지 않았다. Gel화하는 이상의 온도에서 음속과 흡수에 대하여 aging측정을 행하여 gel화에 의한 dam속과 흡수의 변화를 관측하였다. 그 결과 conalbumin는 5$0^{\circ}C$, ovalbumin는 75$^{\circ}C$에서 음속과 흡수의변화가 많이 일어났다. Egg white의 60와 75$^{\circ}C$의 gel화에 의한 음속과 흡수의 큰 변화는 각각 conalbumin과 ovalbumin에 의한 것임을 알았고 Conalbumin과 ovalbumin는 aging 온도를 parameter로하여 이력현상이 관측되었다.

  • PDF

Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment (고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도)

  • Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Effect of the PC, diatomite and zeolite on the performance of concrete composites

  • Kocak, Yilmaz;Savas, Muhsin
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.815-829
    • /
    • 2016
  • This study has been carried out to investigate the effect of the surface properties of Portland cement, diatomite and zeolite on the performance of concrete composites. In this context, to describe the materials used in this study and determine the properties of them, chemical, physical, mineralogical, molecular, thermal, and zeta potential analysis have been applied. In the study, reference (Portland cement), 10%-20% diatomite, 10%-20% zeolite, 5+5%-10+10% diatomite and zeolite were substituted for Portland cement, a total of 7 different cements were obtained. Ultrasonic pulse velocity, capillary water absorption and compressive strength tests were performed on the hardened concrete specimens. Hardened concrete tests have been done on seven different types of concrete, for 28, 56 and 90 days. As a result of experiments it has been identified that both the zeolite and diatomite substitution has a positive effect on the performance of concrete.

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.