• Title/Summary/Keyword: Ultrasonic Vibration

Search Result 529, Processing Time 0.026 seconds

Degassing of Molten A328 Aluminum Alloy by Ultrasonic Vibration (초음파 진동에 의한 A328 알루미늄 합금 용탕의 탈가스)

  • Choe, Kyeong-Hwan;Jang, Hoon;Lim, Jung-Kyu;Kim, Sang-Sub;Cho, Gue-Serb
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.342-346
    • /
    • 2011
  • A328 alloy is an attractive candidate for recycle-friendly aluminum alloy in the recycling of automotive components. In this study, A328 alloy melt was degassed by ultrasonic vibration and the effect of treatment time on the density, fluidity and mechanical properties was investigated. Experimental results reveal that a constant value of density can be reached after less than 180 seconds of ultrasonic treatment time, but the density decreased when the treatment time was 300 seconds. Ti which was dissolved from the horn during ultrasonic treatment reduced the fluidity of melt. After degassing by ultrasonic vibration for 180 seconds, tensile strength increased from 201MPa to 250MPa, and elongation increased from 2.38% to 3.50%, however, further treatment deteriorated the mechanical properties.

The Effect of Ultrasonic Vibration Table on ELID Grinding Process of Aluminum Nitride Ceramics (초음파 진동 테이블이 질화알루미늄 세라믹의 ELID 연삭 가공에 미치는 영향)

  • Kwak, Tea-Soo;Jung, Myung-Won;Kim, Geon-Hee;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1237-1243
    • /
    • 2013
  • This study has focused on the effect of ultrasonic vibration table in ELID grinding process of aluminum nitride ceramics. Aluminum nitride ceramics has superior physical and chemical properties and widely used in IC, LSI substrate, package and so on. To achieve the high effective machining of brittle and high strength ceramics as like aluminum nitride, machining method combined ELID grinding and ultrasonic vibration has been adopted in this study. From the experimental results, material removal rate, MRR has been increased maximum 36 percent and spindle resistance has been decreased in using ultrasonic table. Surface roughness of ground surface became a little worse in using ultrasonic table but was somewhat improved in feed direction.

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

Effect of Ultrasonic Vibration on Culling Characteristics of Hot Rolled Strip (열연강판의 절단특성에 미치는 초음파진동의 영향)

  • 송길호;김기원;박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.225-229
    • /
    • 2003
  • When hot strip is trimmed in the side trimming process at the entry side of tandem cold rolling mill, due to bad quality of trimming face and burr, product quality(saw ear)becomes so bad that it causes drop of yield and claim from customers. Therefore, it was examined that applying ultrasonic vibration is an effective method to improve quality of strip trimming face and decrease burr magnitude by decreasing shear force acting between strip trimming face and knife in side trimming process of cold rolling.

  • PDF

The Vibration Characteristic Analysis by Mode Variation of Ring Type Ultrasonic Motor (링형 초음파모터의 모드선정에 따른 진동특성 해석)

  • 윤신용;백수현;김현일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.309-317
    • /
    • 2004
  • This paper suggested the vibration characteristic improvement by variation mode of ring type ultrasonic motor. Design for the piezoelectric ceramic and elastic body of stator were calculated by the finite element method(FEM) that consider the resonance frequency, vibration mode and coupling efficiency etc. Through the result of vibration analysis from 6 order mode to 8 mode, the 7 order mode was gained very an excellent results that it was the coupling efficient, minimum power loss and bending vibration value. Here over 7 order mode, this paper was acquired that an output current for input voltage was very a large increased results. The result of vibration calculation, from thickness 0.5[mm] to 2[mm], knew the fact that the vibration displacement at 0.5[mm] is an high value too. From such result, this paper was manufactured the ultrasonic motor of outer diameter 5O[mm] , inter 22[mm] having the about 43.86[KHz] resonance frequency. We have gated that a simulation result is 42.2[KHz] and an experiment result is 43.86[KHzl The propriety of this paper was established though comparison. investigation of simulation and experiment result.

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding (플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계)

  • Ha, Chang Yong;Lee, Soo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

Ultrasonic Vibration Machining of Inconel (초음파 진동 부가에 의한 인코넬의 선삭가공)

  • Park, Myung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.357-362
    • /
    • 2003
  • Recently, the demand for advanced technology of high precision and high efficiency processing of hard materials such as inconel is increasing with progress of industrial goods. However, the machinability of inconel is very inferior to the other conventional industrial materials and the machining technology for inconel involves many problems to be solved in machining accuracy, machining efficiency, etc. Therefore it is needs to establish the machining technology. The purpose of this study is to develop an advanced ultrasonic vibration machining technology for inconel, using the 60KHz and 75KHz high frequency, amplitude about 8${\mu}{\textrm}{m}$ and 4${\mu}{\textrm}{m}$, respectively. As the result, this new ultrasonic vibration machining is reasonable and suitable for the high efficient. accuracy machining method of inconel.

A Study on Transport Mechanism of the Ultrasonic Transporting System using Laser Scanning Vibrometer (Laser Scanning Vibrometer를 이용한 초음파 이송시스템의 이송 메커니즘에 관한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.841-844
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF

FEM Analysis of 3-Dimensional Vibration Mode for Windmill type Ultrasonic Motors (풍차형 초음파 전동기에 대한 3차원 진동모드의 유한요소해석)

  • Kim, Woo-Tae;U, Sang-Ho;Shin, Soon-In;Kim, Jin-Soo;Sa, Jeong-Woo;Kim, Ki-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.110-113
    • /
    • 2001
  • In this paper, vibration mode of Windmill type Ultrasonic Motors was analysed. We used the ANSYS program to analysis by FEM. Vibration Mode express 20 modes as each resonance frequency. We bind nearly same modes and compress 5 modes. Windmill type Ultrasonic Motor's rotation is generated the friction of rotor at top endcap. Thus, We will find the best driving frequency that generating large friction at top endcap.

  • PDF