• Title/Summary/Keyword: Ultrasonic Standing-wave

Search Result 46, Processing Time 0.032 seconds

A Study on the Performance Improvement of the Ultrasonic Fuel Supply Device Type Gasoline Automobile(II) (초음파 연료공급장치용 가솔린 자동차의 성능향상에 관한 연구(II))

  • 최두석;설진호;류정인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.47-54
    • /
    • 1993
  • This paper describes briefly the effect of ultrasonic fuel supply device on the performance of four stroke cycle gasoline engine. Experiments were carried out to clarify the effect of ultrasonic fuel supply device on the engine output, traveling fuel consumption ratio, exhaust emissions. The results were obtained as follows: 1.Engine output was increased 9-14% in comparison with that of the conventional injector. 2.Travelling fuel consumption ratio was improved 17-29% in comparison with that of the conventional injector. 3. CO, HC exhaust emissions was decreased compared to the value of the conventional injector. 4.Fuel consumption ratio in highway driving test was improved about 10% in comparison with that of the conventional injector.

  • PDF

Characteristics of Particle Separation in Water Using Lab-Scale Acoustic Standing Wave (실험실 규모의 음향정재파를 이용한 수중의 입자분리 특성)

  • Ahn, Jaehwan;Kang, Sungwon;Ahn, Kwangho;Kim, I tae;Kim, Seog gu;Ahn, Hosang;Lee, Youngsup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.787-791
    • /
    • 2012
  • Characteristics of particle separation in water using labscale acoustic standing wave were studied. Acoustic standing wave is similar to either sound wave or ultrasonic, which makes a constant wave while returning to the origin by reflector. During that time, particulates dispersed in water are collected on the node of wave, where a sound pressure is zero. Acoustic standing wave transducer as of 28.0 kHz and 1.0 MHz were utilized and $6.8{\mu}m$ kaolin and $100.5{\mu}m$ redmud in average diameter were used as experimental materials in water. Once acoustic standing wave are generated in water, water temperature rises by $0.15{\sim}0.20^{\circ}C/min$ due to a sound pressure. Initial concentration of kaolin and redmud were controlled to have same as of 0.1, 0.2, 0.3, 0.4, 0.5 g/L, respectively. Removal efficiency of the turbidity in a reacting chamber after 5 minutes, when acoustic sound wave was formed in most distinct, was measured to have 18.2~56.2% for kaolin and 23.0~53.6% for redmud at 1.0 MHz. Particle separation was not observed at 28.0 kHz.

A Study on Design of the Cross Type Ultrasonic Rotary Motor (Cross형 초음파 회전모터의 설계에 관한 연구)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-192
    • /
    • 2005
  • In this study, the ultrasonic motor which has hollowed cross type stator was designed, and the elastic body of ultrasonic motor was optimized by using a finite element analysis program(ANSYS 9.0). When the length of leg(L) of the elastic body was increased and the width of piezoceramics was decreased, the resonant frequency was increased and the displacement of contact point between the rotor and the stator was increased. However, when the length of the leg was over the 1/3 point of the width of ceramics, the displacement of the contact point was decreased, because the elastic buckle was generated in the leg.

  • PDF

A study on the characteristic or temperature for Ultrasonic Motor using Fuzzy Controller - with frequency control (퍼지제어기를 이용한 초음파 모터의 온도특성에 관한 연구-주파수 제어)

  • Seo, Ki-Yeol;Cha, In-Su;Park, Hae-Am;Choi, Jang-Gun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.597-599
    • /
    • 1996
  • This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In $+20^{\circ}C{\sim}30^{\circ}C$, the USM motor operation character has represented normal condition. But the other temperature, (that is say, when long time operating condition) USM operation characteristic has abnormal condition, that is driving frequency, drive current and r.p.m is down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the frequency at operation temperature and then r.p.m and torque increase.

  • PDF

A Study on the characteristic of temperature for Ultrasonic Motor using Fuzzy Controller - with phase angle difference control (퍼지제어기를 이용한 초음파 모터의 온도특성에 관한 연구 - 위상차 제어)

  • 서기열;차인수;윤형상;유권종
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.52-55
    • /
    • 1996
  • This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In $+20^{\circ}C$~$30^{\circ}C$, the USM motor operation character has represented normal condition. But the other temperature, (that is say, when long time operating condition) USM operation characteristic has abnormal condition, that is driving frequency, drive current and r.p.m is down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the phase angle difference 90$^{\circ}$at operation temperature and them r.p.m and torque increase.

  • PDF

A Study on the temperature compensation of MU-60 Ultrasonic Motor by frequency control (주파수 제어에 의한 MU-60 초음파모터의 온도보상에 관한 연구)

  • 서기열;신일철;임중열;최장균;차인수
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.441-444
    • /
    • 1997
  • This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In +2$0^{\circ}C$~3$0^{\circ}C$, the operation characteristic of USM has represented normal condition. But in the other temperature, the operation characteristic of USM has abnormal condition, that is driving frequency, drive current and r.p.m are down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the frequency at operation temperature and then r.p.m and torque increased.

  • PDF

Modelling and Optimal Design of a Ring-type Structure for the Generation of a Traveling Wave

  • Liu, Xinchang;Civet, Yoan;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 2014
  • Traveling wave generation in a ring type stator has been studied. The basic working principle to create traveling wave has been modelled by the superposition of two orthogonal standing waves. Theoretical analysis shows that the length to radius ratio affects the frequency gap between two pseudo orthogonal modes used to create traveling wave. FEM simulation is then discussed and applied to validate the analytical model. At last, a possible optimal solution is reported with FEM verification.

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves (레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지)

  • Kang, Se Hyeok;Jeon, Jun Young;Kim, Du Hwan;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.401-407
    • /
    • 2017
  • This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses

  • Hou, Xiaoyan;Lee, Heow Pueh;Ong, Chong Jin;Lim, Siak Piang
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.357-370
    • /
    • 2016
  • This paper aims to examine the dynamic response of a newly designed ultrasonic motor under half-sine shock impulses. Impact shock was applied to the motor along x, y or z axis respectively with different pulse widths to check the sensitivity of the motor to the shocks in different directions. Finite Element Analysis (FEA) with the ANSYS software was conducted to obtain the relative displacement of a key point of the motor. Numerical results show that the maximum relative displacement is of micro meter level and the maximum stress is five orders smaller than the Young's modulus of the piezo material, which proves the robustness of the motor.

A Numerical Study on the Agglomeration of Algae by the Ultrasonic Wave (초음파를 이용한 미세조류 응집에 관한 수치해석 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In spite of various merit of algae as biofuel, the production cost of algae is a considerable obstacle for commercialization. The concurrent development of essential technologies is needed for the cultivating, harvesting, extracting and energy transformation. The production cost of algae biofuel has still higher than that of the other commercial biofuel. The major research activity has been focused on the cultivating and the research of other processes has been done with relatively lower activity. It is difficult to separate the algae from water because of the similar magnitude of density each other. The agglomeration and extracting of algae with the hybrid technology using ultrasonic wave is rare effect of environmental hazard and also it is appropriate technology for the next generation energy resources. The present research is investigated for the effective separation of algae from water with the ultrasonics wave. The aim of the present research is focused on the establishment of optimal design of algae agglomeration system. For this purpose, the computational fluid dynamic analysis has been conducted in the flow field with ultrasonic wave and algae flow to clarify the mechanism of algae separation by ultrasonic wave.