DOI QR코드

DOI QR Code

Characteristics of Particle Separation in Water Using Lab-Scale Acoustic Standing Wave

실험실 규모의 음향정재파를 이용한 수중의 입자분리 특성

  • Ahn, Jaehwan (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Kang, Sungwon (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Kwangho (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Kim, I tae (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seog gu (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Hosang (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Lee, Youngsup (Department of Embedded systems Engineering, Incheon University)
  • 안재환 (한국건설기술연구원 환경연구실) ;
  • 강성원 (한국건설기술연구원 환경연구실) ;
  • 안광호 (한국건설기술연구원 환경연구실) ;
  • 김이태 (한국건설기술연구원 환경연구실) ;
  • 김석구 (한국건설기술연구원 환경연구실) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 이영섭 (인천대학교 임베디드시스템공학과)
  • Received : 2012.11.15
  • Accepted : 2012.12.07
  • Published : 2012.12.30

Abstract

Characteristics of particle separation in water using labscale acoustic standing wave were studied. Acoustic standing wave is similar to either sound wave or ultrasonic, which makes a constant wave while returning to the origin by reflector. During that time, particulates dispersed in water are collected on the node of wave, where a sound pressure is zero. Acoustic standing wave transducer as of 28.0 kHz and 1.0 MHz were utilized and $6.8{\mu}m$ kaolin and $100.5{\mu}m$ redmud in average diameter were used as experimental materials in water. Once acoustic standing wave are generated in water, water temperature rises by $0.15{\sim}0.20^{\circ}C/min$ due to a sound pressure. Initial concentration of kaolin and redmud were controlled to have same as of 0.1, 0.2, 0.3, 0.4, 0.5 g/L, respectively. Removal efficiency of the turbidity in a reacting chamber after 5 minutes, when acoustic sound wave was formed in most distinct, was measured to have 18.2~56.2% for kaolin and 23.0~53.6% for redmud at 1.0 MHz. Particle separation was not observed at 28.0 kHz.

실험실 규모의 음향정재파 장치를 이용하여 수체에 포함된 입자의 분리특성을 알아보았다. 음향정재파는 음파 또는 초음파와 유사한 파장으로 반사벽에 의해 발생된 파가 돌아오면서 일정한 파장을 형성한다. 이때 수중에 분산되어 있던 미세한 입자들은 음압이 0인 파장의 절점(node) 부분에 모이게 된다. 주파수 28.0 kHz와 1.0 MHz의 음향정재파 트랜스듀서를 이용하였고, 수체에 포함된 입자는 평균 입경 $6.8{\mu}m$의 카올린과 $100.5{\mu}m$의 레드머드를 사용하였다. 수체 내에 음향정재파가 형성되면 발생된 파장에 의한 음압으로 수온이 $0.15{\sim}0.20^{\circ}C/min $ 정도 상승된다. 카올린과 레드머드의 초기 농도는 0.1, 0.2, 0.3, 0.4, 0.5 g/L로 동일하게 제조하였다. 1.0 MHz의 주파수에서 5분경과 후 음향정재파가 가장 뚜렷하게 형성되었을 때의 반응조내의 탁도 제거율은 카올린은 18.2%~56.2%로, 입경이 큰 레드머드는 23.0%~53.6%의 분리효율을 나타내었다. 28.0 kHz 주파수에서는 입자분리가 이루어지지 않았다.

Keywords

References

  1. Schram, C. J., "Manipulation of particles in an acoustic field," Advances in Sono-chemistry, Vol 2. T. J. Mason(ed.). JAI Press Ltd., London, 293-322(1991).
  2. Higashitani, K., Fukushima, M. and Matsuno, Y., "Migration of suspended particle in plane stationary ultrasonic field," Chem. Eng. Sci., 36(12), 1877-1882(1981). https://doi.org/10.1016/0009-2509(81)80027-9
  3. R. J. Townsend, M. Hill, N. R. Harris, and N. M. White, "Investigation of two-dimensional acoustic resonant modes in a particle separator," Ultrasonics, 44, 467-471(2006). https://doi.org/10.1016/j.ultras.2006.05.025
  4. Gautam, D. P., and Donald, L. F., "Acoustically aided separation of oil droplets from aqueous emulsions," Chem. Eng. Sci., 59, 3183-193(2004). https://doi.org/10.1016/j.ces.2004.03.038
  5. Hawkes, J. J. and Coakley, W. T., "Force field particle filter, combining ultrasound standing waves and laminar flow," Sens. Actuators, B, 75, 213-222,(2001). https://doi.org/10.1016/S0925-4005(01)00553-6
  6. Koo, Y.-H. and Cho, K.-Y., "Development of ultrasonic separation system for perfusion culture of plant cells," Korean J. Biotechnol. Bioeng., 2000 Autumn 402-404(2000).
  7. Hwang, S.-H. and Koo, Y.-M., "Effects of operation and design parameters on the recovery of microorganisms and particles in ultrasonic sedimentation," HWAHAK KONGHAK 39 (6), 788-793(2001).
  8. Y.-S. Lee and J.-H. Kwon, "Separation and concentration of particles in fluid using ultrasonic standing wave," Key Eng. Mater., 321, 63-66(2006).
  9. M. S. Limaye, J. J. Hawkes, and W. T. Coakley, "Ultrasonic standing wave removal of microorganisms from suspension in small batch systems," J. Microbiol. Methods, 27, 211-220 (1996). https://doi.org/10.1016/S0167-7012(96)00951-7
  10. Jeremy, J. H. and W. Terence Coakley, "A continuous flow ultrasonic cell-filtering method," Enzyme Microb. Technol., 19, 57-62(1996). https://doi.org/10.1016/0141-0229(95)00172-7
  11. C. M. Cousins, P. Holownia, J. J. Hawkes, C. P. Price, P. Keay, and W. T. Coakley, "Clarification of plasma from whole human blood using ultrasound," Ultrasonics, 38, 654-656(2000). https://doi.org/10.1016/S0041-624X(99)00212-7
  12. M. C. Bekker, J. P. Mayer, L. Pertorius and D. F. Van Der Merwe, "Separation of solid-liquid suspensions with ultrasonic acoustic energy," Water Res., 31(10), 2543-2549(1997). https://doi.org/10.1016/S0043-1354(97)00088-2
  13. Thomas, L., Filip, P. and Andreas N., "Chip integrated strategies for acoustic separation and manipulation of cells and particles," Chem. Soc. Rev., 36, 492-506(2007). https://doi.org/10.1039/B601326K
  14. Johannes S., Martin J., "Ultrasonic conditioning of suspensions-studies of streaming on particle aggregation on a laband pilot-plant scale," Ultrasonics, 38, 624-628(2000). https://doi.org/10.1016/S0041-624X(99)00145-6
  15. Velimir, M. Ristic, "Principles of Acoustic Devices," John Wiley & Sons, Inc., New York(1983).

Cited by

  1. Characteristics of Micro-Particle Separation according to HRT Changes vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.937