• 제목/요약/키워드: Ultrasonic Pressure

검색결과 464건 처리시간 0.025초

원전 이종금속 용접부 초음파 검사 일반 절차서 개발 (Generic Procedure Development for the Ultrasonic Examination of Dissimilar Metal Welds in Nuclear Power Plants)

  • 양승한;김용식;윤병식;권기일
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-28
    • /
    • 2010
  • To enhance the reliability of ultrasonic testing system, MOST(Ministry of Science and Technology) bulletin 2004-13 was published in 2004.6 requiring performance demonstration in ultrasonic examination and MEST(Ministry of Education, Science and Technology) 2009-37 was published in 2009.9(formerly MOST bulletin 2004-13). In order to meet the MEST bulletin requirement and increase the reliability of ultrasonic testing, all the ultrasonic examination procedure and equipment should be performance demonstrated and qualified. In this paper, generic procedure for the ultrasonic examination of dissimilar metal welds are described and new technique are introduced.

  • PDF

구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발 (Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring)

  • 임승현;이정률;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

전달 시간차 방식 초음파 가스 유량계 (Development of an Ultrasonic Gas Flow Meter Using Transit Time Difference)

  • 박상국;황원호
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.707-713
    • /
    • 2003
  • We investigate the ultrasonic gas flow meter for the measurement of gas volume quantity, which passing through pipe, using the transit time difference method. We have designed a receiving system of an ultrasonic signal and hardware system of a flow meter Also, we have designed an experimental system for the characteristic test and calibration of a gas flow meter system. We have developed an ultrasonic gas flow meter, which has a measurement uncertainty within $\pm$ 1.7 %. For the test, we have compared our system with a difference pressure type flow meter for a few months in the real field. Through the test, we have confirmed that our system have a good reliability and durability. Also, we have confirmed that our system follows very well the variation of gas volume quantity, which was measured by a difference pressure type flow meter.

Cu 박판에 대한 초음파 용착 조건 확립 (Establishment of Conditions for Ultrasonic Welding of Cu sheet)

  • 서정석;박동삼
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.282-287
    • /
    • 2010
  • This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Cu sheet and Cu sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 30% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

금속 박판 Al/Al 및 Al/Cu의 초음파 용착 접합성 평가 (Ultrasonic Deposit Junction Characteristic Evaluation of Metal Sheets Al/Al and Al/Cu)

  • 서정석;백시영
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.642-648
    • /
    • 2011
  • This paper describes an experimental study on ultrasonic welding of similar and dissimilar metals. There are optimum welding conditions which are found for welding of Al/Al and Al/Cu. It evaluated weldability using tensile test, SEM observation and EDX-ray analysis. Both ultrasonic welding of Al/Al and Al/Cu have amplitude as the variable factor. Al/Cu welding was examined again with welding time as variable factor to find the best conditions. The more welding time or amplitude increase, the better weldability. The optimum conditions for ultrasonic welding of Al/Al were formed at pressure 0.25 MPa, welding time 0.25 sec, amplitude 90%. Pressure 0.25 MPa, welding time 0.4 sec, amplitude 80% are optimized for Al/Cu ultrasonic metal welding and solid-state diffusion generated by ultrasonic vibration and frictional heat is confirmed at the welded interface.

초음파 음향임피던스 변환기를 이용한 저압 저진공 측정기술 연구 (The Study of Pressure Vacuum Measurement Techniques Using Ultrasonic Acoustic Impedance Transducers)

  • 홍승수;신용현;조승현;안봉영;임종연;최인묵
    • 한국진공학회지
    • /
    • 제19권5호
    • /
    • pp.319-325
    • /
    • 2010
  • 초음파 변환기의 기체 음향임피던스 변화를 이용해서 압력진공 측정기술을 연구하였다. 상용화된 한 쌍의 500 kHz 공중 초음파 변환기(air-coupled ultrasonic transducer)를 진공용기에 넣고 초음파 진폭을 측정하였다. 그 결과 6.66 kPa에서 202.65 kPa (약 2기압)까지 4회 반복 측정값으로부터 계산된 표준편차는 0.0093에서부터 0.3325 사이에 있었으며, 표준편차를 압력으로 나누어서 백분율로 나타낸 값은 133.32 kPa에서 0.018%이었고 202.65 kPa에서는 0.164%이었다.

초음파가 조사된 고압반응기에서 분획된 Polystyrene의 분자량 분포특성 (MWD of Fractionated Polystyrene in Ultrasound Induced High Pressure Reactor)

  • 김형진;이승범;홍인권
    • Elastomers and Composites
    • /
    • 제32권3호
    • /
    • pp.173-178
    • /
    • 1997
  • In this study, the ultrasonic irradiation in elevated pressure was used to alter the molecular weight and MWD of polystyrene. The high pressure reactor was filled with 0.5w/v% polystyrene solution, and then it was pressurized from 500psi to 4000psi. The ultrasound was irradiated in 10 minutes at each pressure, and the extract was collected and analyzed by GPC. Molecular weight distribution was predicted by log-normal and Schulz distribution function. The average molecular weight and polydispersity of polystyrene were decreased, as the pressure applied during the ultrasonic irradiation was increase. It was able to fractionate polymer material and control polydispersity by adjusting pressure in the ultrasonic irradiation.

  • PDF

풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험 (A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade)

  • 임선;임승환;정예찬;지수정;남문호
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권3호
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

초음파 유량계를 통하는 기체유동의 CFD 해석 (A CFD Analysis of Gas Flow through an Ultrasonic Meter)

  • 김재형;김희동;이호준;황상윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF