• Title/Summary/Keyword: Ultrahigh resolution

Search Result 26, Processing Time 0.027 seconds

Image Evaluation of Resolution Parameter and Reconstitution Filter in 256 Multi Detector Computed Tomography by Using Head Phantom (256 다중 검출기 전산화단층촬영에서 두개부 전용 팬톰을 이용한 분해능 파라메터와 재구성 필터의 영상 평가)

  • Gu, Bon-Seung;Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.814-821
    • /
    • 2011
  • The purpose of this study was to evaluate of resolution parameter and reconstitution filter in the 256 multi detector computed tomography(MDCT) by using the head phantom. We used 256 MDCT, and head phantom of philips system. We evaluated to image quality by using Extended Brilliance Workspace. The protocol were axial scan method with 120 kVp, 0.5 sec of rotation time, 5 mm of slice thickness and increment, 250 mm of field of view(FOV), $512{\times}512$ of matrix size, 1.0 of pitch, $128{\times}0.625$ mm of collimations. The resolution parameter was applied for 'Standard', 'High' and 'Ultrahigh'. The reconstitution filters were changed to seven type of 'A', 'B', 'C', 'D', 'UA', 'UB', 'UC'. The assesment factors of image quality were the uniformity, the noise, the linearity and 50% and 10% of the modulation transfer function(MTF). Finally The good image quality in 'High' resolution parameter showed at the uniformity, the linearity and 50% and 10% of MTF. The 'UA', 'UB' reconstitution filter showed at the good image quality of the uniformity and the noise and 'C' reconstitution filter showed at the same result of the linearity and 50% and 10% of MTF.

Study on Grain Boundaries in Single-layer Graphene Using Ultrahigh Resolution TEM

  • Lee, Zong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.107-107
    • /
    • 2012
  • Recently, large-area synthesis of high-quality but polycrystalline graphene has been advanced as a scalable route to applications including electronic devices. The presence of grain boundaries (GBs) may be detrimental on some electronic, thermal, and mechanical properties of graphene, including reduced electronic mobility, lower thermal conductivity, and reduced ultimate mechanical strength, yet on the other hand, GBs might be beneficially exploited via controlled GB engineering. The study of graphene grains and their boundary is therefore critical for a complete understanding of this interesting material and for enabling diverse applications. I present that scanning electron diffraction in STEM mode makes possible fast and direct identification of GBs. We also demonstrate that dark field TEM imaging techniques allow facile GB imaging for high-angle tilt GBs in graphene. GB mapping is systematically carried out on large-area graphene samples via these complementary techniques. The study of the detailed atomic structure at a GB in suspended graphene uses aberration-corrected atomic resolution TEM at a low kV.

  • PDF

Structural Characteristics of $Y_2O_3$ Films Grown on Differently Surface-treated Si(111) by Ultrahigh Vacuum Ionized Cluster Beam (UHV-ICB 방법으로 Si(111) 기판위에 성장된 $Y_2O_3$ 박막의 구조적 특성에 관한 연구)

  • Lee, Dong-Hun;Seong, Tae-Yeon;Jo, Man-Ho;Hwang, Jeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.528-532
    • /
    • 1999
  • Y$_2$O$_3$films were grown on SiO$_2$-covered Si(111), and hydrogen-terminated Si(111), and hydrogen-terminated Si(111) substrates at 50$0^{\circ}C$ by ultrahigh vacuum ionized cluster beam deposition (UHV-ICB). The microstructures and growth behavior of these films have been investigated by transmission electron diffraction (TED) and high-resolution transmission electron microscopy(HREM). The TED results show that the $Y_2$O$_3$grown on the SiO$_2$-Si has the epitaxial relationship of (11-1)Y$_2$O$_3$∥(111)Si and [-110]Y$_2$O$_3$∥[-110]Si. The film on the H-Si substrate contains YS\ulcorner and amorphous YSi\ulcornerO\ulcorner layers at the interface, having the orientation relationship each other. For the YSi\ulcorner and the Si substrate, the relationship is (0001)YSi\ulcorner∥(111)Si and [1-210]YSi\ulcorner∥∥[-110]Si. For the $Y_2$O$_3$and the YSi\ulcorner ; the relationship is as follows: (11-1)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner(111)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner. Explanation is given to describe the formation mechanisms of the interfacial phases of SiO\ulcorner, YSi\ulcornerO\ulcorner and YSi\ulcorner. It is shown that the crystallinity of the $Y_2$O$_3$film on the SiO$_2$-Si(111) is better than that of $Y_2$O$_3$on H-Si(111).

  • PDF

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Kim, Yun-Young;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

Cold Atomic Beam Extracted by Zeeman Effect (제만 효과를 이용한 저온 원자빔)

  • Kim, Kihwan;Noh, Heung-Ryoul;Wonho Jhe
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.250-251
    • /
    • 2001
  • There is a considerable interest in the generation of a cold atomic beam having a narrow velocity spread that can be used in various experiments in physics such as ultrahigh resolution atomic and molecular spectroscopy, atom optics, atom interferometry, study of solid surfaces, and low energy collision experiments. The invention of the techniques of laser cooling has stimulated developments in the production of cold and bright atomic beams. (omitted)

  • PDF

Ellipsometric Investigation of Optical Property of AgOx mask layer for Super-RENS Application (타원법을 이용한 Super-RENS 용 AgOx mask 층의 광물성 연구)

  • Xuezhe Li;Kim, Sang-Jun;Kim, Sang-Youl
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.36-37
    • /
    • 2003
  • To increase the high-density data storage, a new technique of Super-resolution near-field structure (Super-RENS) consisted of glass/SiN/Sb or AgOx/SiN has been proposed and investigated intensively as a promising structure for near-field ultrahigh-density optical storage. Hence it is important to determine the optical properties of AgOx by using ellipsometry. AgOx thin films were prepared by using magnetron sputtering technique while oxygen flow rate was varied, and the film growth of AgOx were monitored by using in situ ellipsometer. (omitted)

  • PDF

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF

Epitaxy of Si and Si1-xGex(001) by ultrahigh vacuum ion-beam sputter deposition

  • Lee, N. E.;Greene, J. E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • Epitaxial undoped and Sb-doped si films have been grown on Si(001) substrates at temperatures T between 80 and 750$^{\circ}C$ using energetic Si in ultra-high-vacuum Kr+-ion-beam sputter deposition(IBSD). Critical epitaxial thicknesses te, The average thickness of epitaxial layers, in undoped films were found to range from 8nm at Ts=80$^{\circ}C$ to > 1.2 ${\mu}$m at Ts=300$^{\circ}C$ while Sb incorporation probabilities $\sigma$sb varied from unity at Ts 550$^{\circ}C$ to 0.1 at 750$^{\circ}C$. These te and $\sigma$Sb values are approximately one and one-to-three orders of magnitude, respectively, higher than reported results achieved with molecular-beam epitaxy. Plan-view and cross-sectional transmission electron microscopy, high-resolution x-ray diffraction, channeling and axial angular-yield profiles by Rutherford back scattering spectroscopy for epitaxial Si1-x Gex(001) alloy films (0.15$\leq$x$\leq$0.30) demonstrated that the films are of extremely high crystalline quality. critical layer thicknesses hc the film thickness where strain relaxation starts, I these alloys wre found to increase rapidly with decreasing growth temperature. For Si0.70 Ge0.30, hc ranged from 35nm at Ts=550$^{\circ}C$ to 650nm at 350$^{\circ}C$ compared to an equilibrium value of 8nm.

  • PDF

Study of the Parallax Error of a Robotic Camera for Obtaining Ultrahigh-resolution Gigapixel Digital Images (초고해상도의 기가픽셀 디지털이미지 획득을 위한 로봇 카메라의 시차연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2020
  • First, if we want to design and construct a robotic camera, we need to understand the parallax errors between adjacent images, caused by rotation and movement of the robotic camera system. In this paper, we try to derive the mathematical formulation of parallax error and connect it to a conventional lens system, to obtain a useful, generalized, analytic algebraic expression for the parallax error. Utilizing this expression, we can structurally design a robotic camera, and study the Google ART camera as an example of a robotic camera.