• 제목/요약/키워드: Ultrahigh density

검색결과 29건 처리시간 0.025초

Growth Characteristics of Ultrahigh-density Microalgal Cultures

  • Richmond, Amos
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권6호
    • /
    • pp.349-353
    • /
    • 2003
  • The physiological characteristics of cultures of very high cell mass (e.g. 10g cell mass/L), termed“ultrahigh cell density cultures”is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m$\^$-2/ day$\^$-1/) productivity. Cell-growth inhibition (GI) unfolds as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0cm OP reactor could produce ca. 50% more than reactors with longer OP, e.g. 5 or 10cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP of ca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell growth inhibition in the culture, the exact nature of which is awaiting detailed investigation.

초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구 (Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels)

  • 하헌영;김혜진;문준오;이태호;조효행;이창근;유병길;양원석
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

초고진공 프로세스에 의해 제작된 A/CaF2/Diamond MISFET의 개선된 전기적 특성과 인버터회로에의 응용 (Highly Improved Electrical Properties of A1/CaF2/Diamond MISFET Fabricated by Ultrahigh Vacuum Process and Its Application to Inverter Circuit)

  • 윤영
    • 한국전자파학회논문지
    • /
    • 제14권5호
    • /
    • pp.536-541
    • /
    • 2003
  • 본 논문에서는 다이아몬드 표면에의 산소흡착을 억제함으로써 양호한 전기적특성을 가지는 다이아몬드 MISFET를 제작하기 위해 초고진공 프로세스(ultrahigh vacuum process)에 의해 A1/Ca $F_2$/diamond MISFET를 제작하였다. 박막반도체 다이아몬드의 표면도전층으로서는 불소종단에 의해 형성되는 표면 도전층을 이용하였다. 초고진공 프로세스에 의해 제작된 A1/Ca $F_2$/diamond MISFET로부터 상용화된 실리콘 MOSFET와 동등한 레벨인~$10^{11}$ /$cm^2$ eV의 저농도의 표면준위밀도가 관측되었고, 유효이동도 $\mu$ $e_{ff}$ 는 이제까지 발표된 박막반도체 다이아몬드 FET중 최고치인 300 $cm^2$/Vs 이었다. 본 논문에서는 또한 초고진공 프로세스에 의해 제작된 Al/Ca $F_2$/diamond MISFET를 이용하여 인버터회로(inverter circuit)를 제작하였으며, 고온고주파 환경에서 양호한 전기적 특성을 관찰하였다. 본 논문의 특징은 초고진공 프로세스에 의해 제작된 불소화 다이아몬드 박막반도체 MISFET에 관한 최초의 보고이며, 또한 다이아몬드 박막반도체 MISFET의 인버터회로(inverter circuit)동작에 관한 최초의 보고이다.다.

초고밀도 광자료 저장을 위한 광학적 초해상 (Optical super-resolution for ultrahigh density optical data storage)

  • 김명준
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 동계학술발표회 논문집
    • /
    • pp.243-245
    • /
    • 2009
  • 광학 현미경의 분해능이 파장에 따른 회절에 의해 결정된다. 이것을 극복하기 위해서 나노미터까지 분해능을 향상시키기 위해서 근접장 광학이 각광을 받고 있다. 본 보고에서는 흡수 에지 근처의 위상변화 특성에 기인한 초해상을 보고한다.

  • PDF

Expanding Thermal Plasma CVD of Silicon Thin Films and Nano-Crystals: Fundamental Studies and Applications

  • Sanden, Richard Van De
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2012
  • In this presentation I will review the expanding thermal plasma chemical vapour deposition (ETP-CVD) technology, a deposition technology capable of reaching ultrahigh deposition rates. High rate deposition of a-Si:H, ${\mu}c$-Si:H, a-SiNx:H and silicon nanocrystals will be discussed and their various applications, mainly for photovoltaic applications demonstrated. An important aspect over the years has been the fundamental investigation of the growth mechanism of these films. The various in situ (plasma) and thin film diagnostics, such as Langmuir probes, retarding field analyzer, (appearance potential) mass spectrometry and cavity ring absorption spectroscopy, spectroscopic ellipsometry to name a few, which were successfully applied to measure radical and ion density, their temperature and kinetic energy and their reactivity with the growth surface. The insights gained in the growth mechanism provided routes to novel applications of the ETP-CVD technology, such as the ultrahigh high growth rate of silicon nanorystals and surface passivation of c-Si surfaces.

  • PDF

초고진공 전자 사이클로트론 공명 화학 기상증착장치의 제작과 수소 플라즈마를 이용한 실리콘 기판 표면 세정화 (Manufacturing of Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition Reactor and Si Wafer Surface Cleaning by Hydrogen Plasma)

  • 황석희;태흥식;황기웅
    • 전자공학회논문지A
    • /
    • 제31A권4호
    • /
    • pp.63-69
    • /
    • 1994
  • The Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition(UHV-ECRCVD) system whose base pressure is 1${\times}10^{9}$ torr has been constructed. In-situ cleaning prior to the epitaxial growth was carried out at 56$0^{\circ}C$ by ECR generated uniform hydrogen plasma whose density is $10^{10}/cm{3}$. The natural oxide was effectively removed without damage by applying positive DC bias(+10V) to the substrate. RHEED(Reflection High Energy Electron Diffraction) analysis has been used to confirm the removal of the surgace oxide and the streaky 2$\times$1 reconstruction of the Si surface, and the suppression of the substrate damage is anaylized by X-TEM(cross-sectional Transmission Electron Microscopy). Surface cleaning technique by ECR hydrogen plasma confirmed good quality epitaxial growth at low temperature.

  • PDF

Magnetization reversal process of the nanosized elliptical permalloy magnetic dots with various aspect ratios

  • Lee, J. H.;K. H. Oh;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.186-187
    • /
    • 2002
  • Recently, there has been much interest in magnetic thin film patterned in submicron scale because of possible ultrahigh density storage media or logical device applications [1-3]. Various geometries such as rectangle, circle, ring and ellipse type dots have been studied to find the shape showing stable switching behavior from repeated cycles. However, rectangle and circle types may not be suitable for device applications because they have two uncontrollable different magnetization reversal modes: C state and S state, resulting in different coercivity and irreproducible switching[4]. (omitted)

  • PDF