• 제목/요약/키워드: Ultra-high temperature condition

검색결과 81건 처리시간 0.042초

석영미분말의 입자크기가 UHPC의 유동성 및 강도에 미치는 영향 (Effect of siliceous powder's particle size on the workability and strength of UHPC)

  • 강수태;박정준;류금성;고경택;김성욱;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.441-444
    • /
    • 2008
  • 본 연구에서의 초고성능 콘크리트(Ultra High Performance Concrete, UHPC)는 모래, 시멘트, 실리카퓸, 석영미분말, 강섬유 및 고성능감수제 등으로 구성되며, 평균입경 약 0.5mm이하의 아주 작은 입자들로 구성된다. 일반적으로 석영미분말는 일정크기 이상의 공극을 메움으로써 물리적 성능개선의 효과가 있으며 또한 높은 $SiO_2$함량을 가지므로 고온 또는 고압의 양생조건에서 시멘트 수화물과의 화학반응을 통해서도 성능 향상효과가 있는 것으로 알려져 있다. 본 연구에서는 상압, $90^{\circ}C$ 증기양생 조건에서 석영미분말의 입자크기가 초고성능 콘크리트의 역학적 특성에 어떠한 영향을 미치는지에 대해 알아보고자 하였으며, 평가항목으로는 굳지 않은 상태에서의 유동성과 굳은 상태에서의 압축강도, 극한변형률, 탄성계수 및 휨강도를 평가하였다. 석영미분말의 입경크기의 영향은 약 $2{\mu}m$에서 $26{\mu}m$까지의 범위에서 고려하였으며, 입경 크기가 작을수록 유동성 및 강도특성이 모두 향상되는 것으로 나타났다.

  • PDF

초정밀 사출렌즈 금형 기술 (Mold Technology for Precision Injection Lens)

  • 하태호;조형한;송준엽;전종
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.561-567
    • /
    • 2014
  • Precision injection mold is an essential element in order to manufacture small and precision plastic lenses used for phone camera. There are many critical factors to meet the requested specifications of high quality plastic lenses. One of the main issues to realize high quality is minimizing decenter value, which becomes more critical as pixel numbers increases. This study suggests the method to minimize decenter value by modifying ejecting structure of the mold. Decenter value of injection-molded lens decreased to 1 ${\mu}m$ level from 5 ${\mu}m$ by applying suggested ejecting method. Also, we also developed BIS (Built-in Sensor) based smart mold system, which has pressure and temperature sensors inside of the mold. Pressure and temperature profiles from cavities are obtained and can be used for deduction of optimal injection molding condition, filling imbalance evaluation, status monitoring of injection molding and prediction of lens quality.

초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구 (Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure)

  • 송정호;엄정혜;노윤영;김영욱;송오성
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

얇은 콘크리트 덧씌우기 포장의 거동 평가 (Behavior Analysis of Ultra-Thin Whitetopping in Field)

  • 강장환;장진연;구한모;조윤호
    • 한국도로학회논문집
    • /
    • 제6권1호
    • /
    • pp.25-36
    • /
    • 2004
  • 국내 고속국도 및 일반국도의 약40%, 98%가 아스팔트 포장으로 구성되어 있으며 아스팔트 포장의 주요 파손 형태는 러팅(rutting) 및 균열이다. 파손이 심한 아스팔트 포장에 공용성이 좋은 것으로 알려져 있는 UTW(Ultra-Thin Whitetopping, 이하 중 신 콘)가 국내 도로의 유지보수 공법으로 적용될 수 있는가를 판단하였다. 본 논문은 경기도 폐도에 시험 시공된 중 신 콘 포장에서의 정적하중재하실험을 통하여 교통하중 및 환경하중 조건에 따른 중 신 콘의 거동 분석 결과이다. 콘크리트 두께를 50, 100, 150mm로 하여 두께에 따른 거동을 분석한 결과, 콘크리트 두께가 50mm일 때 콘크리트 하부에서 발생하는 인장 변형률이 급격하게 증가한다는 것을 알 수 있었다. 또한 계절별 실험을 통해 포장 온도가 중 신 콘 거동에 미치는 영향이 큰 것을 알 수 있었다. 하중재하위치에 따른 거동분석 결과에서는 슬래브 중앙부와 줄눈부에서 약 25cm 떨어진 지점부터 하중이 재하될 때 중앙부와 줄눈부에 영향을 미치기 시작하였고 이 때, 최대 인장 변형률의 75%까지 변형률이 발생함에 따라 줄눈간격 결정에 주의를 요해야 할 것으로 판단되었다.

  • PDF

흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구 (A Study on the Application of the Lean Boosting in a Hydrogen-fueled Engine with the SI and the External Mixture)

  • 이광주;이종구;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.136-141
    • /
    • 2013
  • In order to achieve simultaneously the ultra-low NOx, the high power and the high efficiency in a hydrogen-fueled engine with SI and the external mixture, the effects of low temperature combustion, performance and exhaust are compared and analyzed by the application of the lean boosting. As the results, the decrease rate of the high temperature in the hydrogen is less decreased than the other fuels by high constant-volume specific heat. However, when the conditions of 1.7bar and ${\Phi}=0.33$ are reached by the lean boosting, the maximum gas temperature of hydrogen is decreased under the temperature of NOx formation and it is possible to stabilize combustion below 2% of COVimep. Also, at that condition, it is feasible to achieve simultaneously NOx-free and the power of gasoline level. Therefore, it is found that the lean boosting is useful in the hydrogen-fueled engine.

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.

주사제 사용을 위한 봉독의 균질성 및 안정성 평가 (Experimental studies of homogeneity and stability honeybee venom using ultra-high performance liquid chromatography)

  • 한상미;김세건;홍인표;우순옥;장혜리;이경우
    • 한국동물위생학회지
    • /
    • 제39권2호
    • /
    • pp.81-86
    • /
    • 2016
  • Honeybee venom (BV) from Apis mellifera L. has been used as natural antimicrobial compounds in pigs, cows, dairy cattle and chicken farms in Korea. The purpose of this study was conducted to confirm homogeneity and stability of BV dissolved with distilled water or saline solution. Melittin was analyzed with ultra-high performance liquid chromatography (UPLC) for BV to secure the validation of analysis. BV at concentration of 1 mg/mL was dissolved with distilled water or saline solution at room temperature. Homogeneity of BV dissolved with distilled water or saline solution at upper, milddle, and lower layers all satisfied the accuracy and precision criteria. Stability of BV dissolved with distilled water or saline solution for 7 days all satisfied the criterion both light and dark storage condition. BV has satisfied with homogeneity and stability in distilled water or saline solution at room temperature under light or dark condition. The results of this study suggest that BV has a possibility as the substitute of natural antimicrobial agents for the animal drugs and feed additives.

SiGe HBT의 Current Gain특성 향상 (Current Gain Enhancement in SiGe HBTs)

  • 송오성;이상돈;김득중
    • 한국산학기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.367-370
    • /
    • 2004
  • 초고속 RF IC의 핵심소자인 SiGe 에피텍시층을 가진 이종양극트란지스터(hetero junction bipolar transistor: HBT)를 0.35㎛급 Si-Ge BiCMOS공정으로 제작하였다. 낮은 VBE영역에서의 current gain의 선형성을 향상시키기 위하여 SiGe에피텍시층의 결함밀도를 감소시킬 수 있는 캐핑실리콘의 두께와 EDR온도의 최적화 공정조건을 알아보았다. 캐핑 실리콘의 두께를 200Å과 300Å으로 나누고 초고속 무선통신에서 요구되는 낮은 노이즈를 위한 EDR(Emitter Drive-in RTA)의 온도와 시간을 900-1000℃, 0-30 sec로 각각 변화시키면서 최적조건을 확인하였다. 실험범위 내에서의 최적공정조건은 300Å의 capping 실리콘과 975℃-30sec의 EDR 조건을 확인하였다.

  • PDF

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.

핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구 (Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding)

  • 박순섭;고명진;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.