DOI QR코드

DOI QR Code

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang (College of Civil Engineering, Hunan University) ;
  • Yanping Zhu (College of Civil Engineering, Hunan University) ;
  • Pengfei Ma (Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology) ;
  • Shuilong He (College of Civil Engineering, Hunan University) ;
  • Xudong Shao (College of Civil Engineering, Hunan University)
  • Received : 2022.01.03
  • Accepted : 2023.06.18
  • Published : 2023.06.25

Abstract

Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Natural Science Foundation of China (Grant No. 51778221).

References

  1. Aaleti, S. and Sritharan, S. (2019), "Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application", J. Bridg. Eng., 24(6), 04019041. https://doi.org/10.1061/(asce)be.1943-5592.0001404
  2. AFGC (2013), Ultra-high-performance fiber-reinforced concrete: interim recommendations, AFGC-SETRA Working Group, Paris, France.
  3. Al-Madani, M.K., Al-Osta, M.A., Ahmad, S., Khalid, H.R. and Al-Huri, M. (2022), "Interfacial bond behavior between ultra high performance concrete and normal concrete substrates", Constr. Build. Mater., 320, 126229. https://doi.org/10.1016/j.conbuildmat.2021.126229
  4. AlHallaq, A., Tayeh, B. and Shihada, S. (2017), "Investigation of the bond strength between existing concrete substrate and UHPC as a repair material", Int. J. Eng. Adv. Technol., 6(3), 210-217.
  5. Amin, M., Tayeh, B. and Agwa, I. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Cleaner Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073
  6. Amin, M., Zeyad, A., Tayeh, B. and Agwa, I. (2022), "Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete", Constr. Build. Mater., 320, 126233. https://doi.org/10.1016/j.conbuildmat.2021.126233
  7. Baharuddin, N.K., Nazri, F.M., Bakar, B.H.A., Beddu, S. and Tayeh, B.A. (2020), "Potential use of Ultra high-performance fibre-reinforced concrete as a repair material for fire-damaged concrete in terms of bond strength", Int. J. Integr. Eng., 12(9), 87-95. https://doi.org/10.30880/ijie.2020.12.09.011
  8. Bentz, D.P., Varga, De la I., Munoz, J.F., Spragg, R.P., Graybeal, B.A., Hussey, D.S., Jacobson, D.L., Jones, S.Z. and LaManna, J.M. (2018), "Influence of substrate moisture state and roughness on interface microstructure and bond strength: Slant shear vs. pull-off testing", Cement Concrete Compos., 87, 63-72. https://doi.org/10.1016/j.cemconcomp.2017.12.005
  9. Beushausen, H. and Alexander, M.G. (2008), "Bond strength development between concretes of different ages", Magaz. Concrete Res., 60(1), 65-74. https://doi.org/10.1680/macr.2007.00108
  10. Bruhwiler, E. and Denarie, E. (2013), "Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete", Struct. Eng. Int., 23(4), 450-457. https://doi.org/10.2749/101686613X13627347100437
  11. Dugat, J., Roux, N. and Bernier, G. (1996), "Mechanical properties of reactive powder concretes", Mater. Struct., 29, 233-240. https://doi.org/10.1007/BF02485945
  12. ENV 1994-2 (2004), Eurocode 4: Design of composite steel and concrete structure, part 1-1: General rules and rules for buildings; European Committee for Standardization.
  13. Elsayed, M., Tayeh, B.A., Abou Elmaaty, M. and Aldahshoory, Y. (2022), "Behaviour of RC columns strengthened with Ultra-High Performance Fiber Reinforced concrete (UHPFRC) under eccentric loading", J. Build. Eng., 47, 103857. https://doi.org/10.1016/j.jobe.2021.103857
  14. Faried, A., Mostafa, S., Tayeh, B. and Tawfik, T. (2021a), "Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions", J. Build. Eng., 43, 102569. https://doi.org/10.1016/j.jobe.2021.102569
  15. Faried, A., Mostafa, S., Tayeh, B. and Tawfik, T. (2021b), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Constr. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279
  16. Ganesh, P. and Ramachandra Murthy, A. (2020), "Simulation of surface preparations to predict the bond behaviour between normal strength concrete and ultra-high performance concrete", Constr. Build. Mater., 250, 118871. https://doi.org/10.1016/j.conbuildmat.2020.118871
  17. Geissert, D.G., Li, S., Frantz, G.C. and Stephens, J.E. (1999), "Splitting prism test method to evaluate concrete-to-concrete bond strength", ACI Mater. J., 96(3), 359-366. https://doi.org/10.14359/634
  18. Gesoglu, M., Guneyisi, E., Muhyaddin, G.F. and Asaad, D.S. (2016), "Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration", Compos. Part B Eng., 103, 74-83. https://doi.org/10.1016/j.compositesb.2016.08.004
  19. Graybeal, B. (2006), Material property characterization of ultra-high-performance concrete; Rep. No. FHWA-HRT-06-103, Federal Highway Administration, Washington, DC, USA.
  20. Graybeal, B. (2012), Construction of field-cast ultra-high-performance concrete connections; Technote.
  21. Haber, Z.B., Munoz, J.F., De la Varga, I. and Graybeal, B.A. (2018), "Bond characterization of UHPC overlays for concrete bridge decks: Laboratory and field testing", Constr. Build. Mater., 190, 1056-1068. https://doi.org/10.1016/j.conbuildmat.2018.09.167
  22. Harris, D., Sarkar, J. and Ahlborn, T.T.M. (2011), "Characterization of interface bond of ultra-high-performance concrete bridge deck overlays", Transp. Res. Rec., 40-49. https://doi.org/10.3141/2240-07
  23. Harris, D., Carbonell, M., Gheitasi, A., Ahlborn, T. and Rush, S. (2014), "The challenges related to interface bond characterization of ultra-high-performance concrete with implications for bridge rehabilitation practices", Adv. Civil Eng. Mater., 4(2), 20140034. https://doi.org/10.1520/ACEM20140034
  24. He, W. (2004), "Research on the interfacial bond strength of new-to-old concrete", Master dissertation; Hunan University, Changsha, China. [In Chinese]
  25. Hong, S. and Kang, S. (2015), "Effect of surface preparation and curing method on bond strength between UHPC and normal strength concrete", IABSE Symposium Report; 105(15).
  26. Hung, C.C., Lee, H.S. and Chan, S.N. (2019), "Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes", Compos. Part B Eng., 158, 269-278. https://doi.org/10.1016/j.compositesb.2018.09.091
  27. Hussein, H., Walsh, K., Sargand, S. and Steinberg, E. (2016), "Interfacial properties of ultra-high-performance concrete and high-strength concrete bridge connections", J. Mater. Civil Eng., 28(5), 04015208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001456
  28. Jang, H., Lee, H. and Cho, K. (2017), "Experimental study on shear performance of plain construction joints integrated with ultra-high-performance concrete (UHPC)", Constr. Build. Mater., 152, 16-23. https://doi.org/10.1016/j.conbuildmat.2017.06.156
  29. Jiang, H., Shao, T., Fang, Z., Xiao, J. and Hu, Z. (2021), "Shear-friction behavior of grooved construction joints between a precast UHPC girder and a cast-in-place concrete slab", Eng. Struct., 228, 111610. https://doi.org/10.1016/j.engstruct.2020.111610
  30. Li, Z. and Rangaraju, P.R. (2016), "Effect of surface roughness on the bond between ultrahigh-performance and precast concrete in bridge deck connections", Transp. Res. Rec., 2577, 88-96. https://doi.org/10.3141/2577-11
  31. Li, W., Huang, G., Hu, G., Duan, W.H. and Shah, S.P. (2017), "Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment", Construct. Build. Mater., 131, 767-774. https://doi.org/10.1016/j.conbuildmat.2016.11.024
  32. Magbool, H. and Tayeh, B. (2021), "Influence of substrate roughness and bonding agents on the bond strength between old and new concrete", Adv. Concrete Constr., Int. J., 12(1), 33-45. https://doi.org/10.12989/acc.2021.12.1.033
  33. Mansour, W. and Tayeh, B. (2020), "Shear behaviour of RC beams strengthened by various ultrahigh performance fibre-reinforced concrete systems", Adv. Civil Eng., 2139054. https://doi.org/10.1155/2020/2139054
  34. Meng, W. and Khayat, K.H. (2017), "Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar", Compos. Part B Eng., 117, 26-34. https://doi.org/10.1016/j.compositesb.2017.02.019
  35. Miguel, A., Carbonell, M., Harris, D., Ahlborn, T. and Froster, D. (2014), "Bond performance between ultra-high-performance concrete and normal-strength concrete", J. Mater. Civil Eng., 26(8), 04014031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000890
  36. Momayez, A., Ehsani, M.R., Ramezanianpour, A.A. and Rajaie, H. (2005), "Comparison of methods for evaluating bond strength between concrete substrate and repair materials", Cement Concrete Res., 35, 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027
  37. Oesterlee, C. (2010), "Structural response of reinforced UHPFRC and RC composite members", Ph.D. Dissertation; EPFL, Lausanne, Switzerland.
  38. Pham, H., Khuc, T., Nguyen, T., Cu, H., Le, D. and Trinh, T. (2020), "Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC", Adv. Concrete Constr., Int. J., 10(1), 71-79. https://doi.org/10.12989/acc.2020.10.1.071
  39. Qi, J., Wang, J., Li, M. and Chen, L. (2017), "Shear strength of stud shear connectors with initial damage: experiment, FEM model and theoretical formulation", Steel Compos. Struct., Int. J., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079
  40. Qi, J., Wang, J. and Feng, Y. (2019), "Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate", Adv. Concrete Constr., Int. J., 7(4), 219-229. https://doi.org/10.12989/acc.2019.7.4.219
  41. Qi, J., Tang, Y., Cheng, Z., Xu, R. and Wang, J. (2020), "Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges", Adv. Concrete Constr., Int. J., 9(4), 413-421. https://doi.org/10.12989/acc.2020.9.4.413
  42. Reactive Powder Concrete (GB/T 31387-2015), General Administration of Quality Supervision, Inspection and Quarantine, Beijing,
  43. Sahmaran, M., Yucel, H.E., Yildirim, G., Al-Emam, M. and Lachemi, M. (2014), "Investigation of the bond between concrete substrate and ECC overlays", J. Mater. Civil Eng., 26, 167-174. https://doi.org/10.1061/(asce)mt.1943-5533.0000805
  44. Saucier, F., Bastien, J., Pigeon, M. and Fafard, M. (1991), "A combined shear-compression device to measure concrete-to-concrete bonding", Exp. Tech., 15, 50-55. https://doi.org/10.1111/j.1747-1567.1991.tb01214.x
  45. Semendary, A.A. and Svecova, D. (2020a), "Interfacial parameters for bridge connections at high-strength concrete-ultrahigh-performance concrete interface", J. Mater. Civil Eng., 32(4), 04020060. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003107
  46. Semendary, A.A. and Svecova, D. (2020b), "Factors affecting bond between precast concrete and cast in place ultra-high-performance concrete (UHPC)", Eng. Struct., 216, 110746. https://doi.org/10.1016/j.engstruct.2020.110746
  47. Sharifa, A.M., Assi, N.A. and Al-Osta, M.A. (2020), "Use of UHPC slab for continuous composite steel-concrete girders", Steel Compos. Struct., Int. J., 34(3), 321-332. https://doi.org/10.12989/scs.2020.34.3.321
  48. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., Int. J., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021
  49. Specification for mix proportion design of ordinary concrete (JGJ 55-2011), China construction industry press, Beijing, China.
  50. Standard for test method of mechanical properties on ordinary concrete (GB50081-2002), China construction industry press, Beijing, China
  51. Tayeh, B., Bakar, B. and Johari, M. (2012), "Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high-performance fiber concrete overlay", Constr. Build. Mater., 36, 538-548. https://doi.org/10.1016/j.conbuildmat.2012.06.013
  52. Tayeh, B., Bakar, B. and Johari, M. (2013a), "Characterization of the interfacial bond between old concrete substrate and ultra-high-performance fiber concrete repair composite", Mater. Struct., 46, 743-753. https://doi.org/10.1617/s11527-012-9931-1
  53. Tayeh, B., Bakar, B. and Johari, M. (2013b), "Evaluation of bond strength between normal concrete substrate and ultra-high-performance fiber concrete as a repair material", Procedia Eng., 54, 554-563. https://doi.org/10.1016/j.proeng.2013.03.050
  54. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Ratnam, M.M. (2013c), "The relationship between substrate roughness parameters and bond strength of ultrahigh- performance fiber concrete", J. Adhes. Sci. Technol., 26, 1790-1810. https://doi.org/10.1080/01694243.2012.761543
  55. Tayeh, B.A., Abu Bakar, B.H., Johari, M.M. and Zeyad, A.M. (2013d), "The role of silica fume in the adhesion of concrete restoration systems", Adv. Mater. Res., 626, 265-269. https://doi.org/10.4028/www.scientific.net/AMR.626.265
  56. Tayeh, B., Abu Bakar, B., Megat Johari, M. and Ratnam, M. (2014), "Existing concrete textures: their effect on adhesion with fibre concrete overlay", Struct. Build., 167(6), 355 368. https://doi.org/10.1680/stbu.12.00083
  57. Tayeh, B., Aadi, A., Hilal, N., Abu Bakar, B., Al-Tayeb, M. and Mansour, W. (2019), "Properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) a review paper", In: AIP Conference Proceedings (Vol. 2157, No. 1, p. 020040), AIP Publishing LLC.
  58. Wu, Z., Shi, C. and Khayat, K.H. (2019), "Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape", Compos. Part B Eng., 174, 107021. https://doi.org/10.1016/j.compositesb.2019.107021
  59. Xie, T., Fang, C., Mohamad Ali, M.S. and Visintin, P. (2018), "Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study", Cement Concrete Compos., 91, 156-173. https://doi.org/10.1016/j.cemconcomp.2018.05.009
  60. Yang, L., Shi, C. and Wu, Z. (2019), "Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review", Compos. Part B Eng., 178, 107456. https://doi.org/10.1016/j.compositesb.2019.107456
  61. Yoo, D.Y., Kim, S. and Kim, M. (2018), "Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions", Construct. Build. Mater., 162, 406-419. https://doi.org/10.1016/j.conbuildmat.2017.12.029
  62. Yoo, D.Y., Kim, J.J. and Chun, B. (2019), "Dynamic pullout behavior of half-hooked and twisted steel fibers in ultra-high-performance concrete containing expansive agents", Compos. Part B Eng., 167, 517-532. https://doi.org/10.1016/j.compositesb.2019.03.022
  63. Zanotti, C., Banthia, N. and Plizzari, G. (2014), "A study of some factors affecting bond in cementitious fiber reinforced repairs", Cement Concrete Res., 63, 117-126. https://doi.org/10.1016/j.cemconres.2014.05.008
  64. Zhang, P., Liu, H. and Gao, D. (2017), "Shear-bond behavior of the interface between FRP profiles and concrete by the double-lap push shear method", J. Compos. Constr., 21(4), 04017012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000795
  65. Zhu, Y., Zhang, Y., Hussein, H.H., Liu, J. and Chen, G. (2020), "Experimental study and theoretical prediction on shrinkage-induced restrained stresses in UHPC-RC composites under normal curing and steam curing", Cement Concrete Compos., 110, 103602. https://doi.org/10.1016/j.cemconcomp.2020.103602