• Title/Summary/Keyword: Ultra-high Temperature Oxidation

Search Result 38, Processing Time 0.029 seconds

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF

Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics (ZrB2-SiC 세라믹스의 미세구조와 기계적 물성에 미치는 B4C 첨가효과)

  • Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Kyung-Ja;Nahm, Sahn;Kim, Seong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.578-582
    • /
    • 2010
  • $ZrB_2$ has a melting point of $3245^{\circ}C$ and a relatively low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultrahigh temperature environments over $2000^{\circ}C$. Beside these properties, $ZrB_2$ is known to have excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. In order to enhance such oxidation resistance, SiC was frequently added to $ZrB_2$-based systems. Due to nonsinterability of $ZrB_2$-based ceramics, research on the sintering aids such as $B_4C$ or $MoSi_2$ becomes popular recently. In this study, densification and high-temperature properties of $ZrB_2$-SiC ceramics especially with $B_4C$ are investigated. $ZrB_2$-20 vol% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. Mixed powders were sintered using hot pressing (HP). With sintered bodies, densification behavior and high-temperature (up to $1400^{\circ}C$) properties such as flexural strength, hardness, and so on were examined.

Annealing Effects on Ultra thin MOS Capacitors

  • Ng, Alvin Chi-hai;Xu, Jun;Xu, J.B.;Cheung, W.Y.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.62.1-62
    • /
    • 2003
  • Silicon oxide with thickness lee than 9 nm is fabricated by tube furnace oxidation. Nitrogen is added to dilute the oxidation rate. Aluminum dots with radius of 0.05 cm are deposited on the oixde. High frequency capacitance-voltage(HF C-V), conductance-voltage(G-V) and current-voltage(I-V) characteristics are measured. Annealing under nitrogen atmosphere is carried out with different time and at different temperature. Densities of the interface states before and after annealing are compared. After annealing, a decrease in density of the interface states is found. Experiments show that 45$0^{\circ}C$ annealing for 30 minutes has the lowest density of the interface states.

  • PDF

Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route (Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동)

  • Lim, Joo-Hyun;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

Ultra low temperature polycrystalline silicon thin film transistor using sequential lateral solidification and atomic layer deposition techniques

  • Lee, J.H.;Kim, Y.H.;Sohn, C.Y.;Lim, J.W.;Chung, C.H.;Park, D.J.;Kim, D.W.;Song, Y.H.;Yun, S.J.;Kang, K.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.305-308
    • /
    • 2004
  • We present a novel process for the ultra low temperature (<150$^{\circ}C$) polycrystalline silicon (ULTPS) TFT for the flexible display applications on the plastic substrate. The sequential lateral solidification (SLS) was used for the crystallization of the amorphous silicon film deposited by rf magnetron sputtering, resulting in high mobility polycrystalline silicon (poly-Si) film. The gate dielectric was composed of thin $SiO_2$ formed by plasma oxidation and $Al_2O_3$ deposited by plasma enhanced atomic layer deposition. The breakdown field of gate dielectric on poly-Si film showed above 6.3 MV/cm. Laser activation reduced the source/drain resistance below 200 ${\Omega}$/ㅁ for n layer and 400 ${\Omega}$/ㅁ for p layer. The fabricated ULTPS TFT shows excellent performance with mobilities of 114 $cm^2$/Vs (nMOS) and 42 $cm^2$/Vs (pMOS), on/off current ratios of 4.20${\times}10^6$ (nMOS) and 5.7${\times}10^5$ (PMOS).

  • PDF

Selective Atomic Layer Deposition of Co Thin Films Using Co(EtCp)2 Precursor (Co(EtCp)2프리커서를 사용한 Co 박막의 선택적 원자층 증착)

  • Sujeong Kim;Yong Tae Kim;Jaeyeong Heo
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.163-169
    • /
    • 2024
  • As the limitations of Moore's Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying (기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구)

  • Jung-Joon Kim;Sang-Min Yoon;Deok-Hyun Han;Jongmin Byun;Young-Kyun Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

Measurements of Particulate Matters for the HSDI Diesel Engine with DOC using the ELPI (ELPI를 이용한 산화촉매 장착 고속 직접분사식 디젤엔진의 입자상물질 계측)

  • Choi, Byung-Chul;Jang, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2245-2250
    • /
    • 2003
  • Particulate matters(PM) have bad effect on the health. We carried out measurements of diesel PM under $10{\mu}m$ diameter from a HSDI diesel engine with a diesel oxidation catalyst(DOC) by using the ELPI. This paper compares the two results of the smoke level and the PM level of masses and numbers. We also investigated the effect of the DOC. Under high speed and load, HSDI diesel engine exhausts much masses of particulate matters over 100nm diameter, and a number of PM from 7 to 100nm diameters at the same condition. DOC could reduce the total mass of the PM. However, the DOC could increase the number of ultra fine PM. Before light-off of the soot, the DOC absorb the PM and the DOC oxidize the PM after light-off temperature. The fine PM could be made during the oxidation. Therefore, the advanced DOC is needed to reduce the number of the fine PM.

  • PDF