DOI QR코드

DOI QR Code

Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying

기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구

  • Jung-Joon Kim (Center for Advanced Materials & Processing, Institute for Advanced Engineering) ;
  • Sang-Min Yoon (Center for Advanced Materials & Processing, Institute for Advanced Engineering) ;
  • Deok-Hyun Han (Center for Advanced Materials & Processing, Institute for Advanced Engineering) ;
  • Jongmin Byun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Young-Kyun Kim (Center for Advanced Materials & Processing, Institute for Advanced Engineering)
  • 김정준 (고등기술연구원 신소재공정센터) ;
  • 윤상민 (고등기술연구원 신소재공정센터) ;
  • 한덕현 (고등기술연구원 신소재공정센터) ;
  • 변종민 (서울과학기술대학교 신소재공학과) ;
  • 김영균 (고등기술연구원 신소재공정센터)
  • Received : 2023.12.20
  • Accepted : 2024.02.20
  • Published : 2024.02.28

Abstract

The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022M3H4A1A04076792).

References

  1. T. M. Pollock: Nat. Mater., 15 (2016) 809.
  2. Y. Chen, T. Hammerschmidt, D. G. Pettifor, J.-X. Shang and Y. Zhang, Acta Mater., 57 (2009) 2657.
  3. Y. Chen, J. X. Shang and Y. Zhang: J. Phys. -Condens. Matter., 19 (2007) 016215.
  4. Y. Chen, J. X. Shang and Y. Zhang: Phys. Rev. B, 76 (2007) 184204.
  5. W. Li, H. B. Yang, A. D. Shan, L. T. Zhang and J. S. Wu: Intermetallics, 14 (2006) 392.
  6. Y. Guo, L. Jia, B. Kong, H. Zhang and H. Zhang: Mater. Sci. Eng. A, 701 (2017) 149.
  7. J. A. Lemberg and R. O. Ritchie: Adv. Mater., 24 (2012) 3445.
  8. J. Kajuch, J. Short and J. J. Lewandowski: Acta Metall. Mater., 43 (1995) 1955.
  9. L. Y. Sheng, Y. X. Tian and J. T. Guo: Adv. Compos. Lett. 27 (2018) 168.
  10. J. Geng, P. Tsakiropoulos and G. Shao: Mater. Sci. Eng. A, 441 (2006) 26.
  11. M. R. Jackson, B. P. Bewlay, R. G. Rowe, D. W. Skelly and H. A. Lipsitt: JOM, 48 (1996) 39.
  12. P. R. Subramanian, M. G. Mendiratta, D. M. Dimiduk and M. A. Stucke: Mater. Sci. Eng. A, 239 (1997) 1. https://doi.org/10.1016/S0921-5093(97)00555-8
  13. B. P. Bewlay, M. R. Jackson and H. A. Lipsitt: Metall. Mater. Trans. A, 27 (1996) 3801.
  14. L. Y. Sheng, J. T. Guo, C. Lai and T. F. Xi: Acta Metall. Sin., 51 (2015) 828.
  15. L. Y. Sheng, J. T. Guo, W. L. Ren, Z. X. Zhang, Z. M. Ren and H. Q. Ye: Intermetallics, 19 (2011) 143.
  16. Y. Guo, L. Jia, W. Lu and H. Zhang: Chin. J. Mech. Eng., 35 (2022) 84.
  17. L. Zhang and X. Guo: Mater. Trans., 59 (2018) 528.
  18. I. Y. Ko, B. R. Kim, K. S. Nam, B. M. Moon, B. S. Lee and I. J. Shon: Met. Mater. Int., 15 (2009) 399. https://doi.org/10.1007/s12540-009-0399-7
  19. I. S. Goncharov, N. Razumov, A. I. Shamshurin and Q. S. Wang: Key Eng. Mater., 822 (2019) 617.
  20. N. Shkodich, A. Sedegov and K. Kuskov, S. Busurin, Y. Scheck, S. Vadchenko and D. Moskovskikh: Metals, 10 (2020) 1268.
  21. R. Trevino, E. Maguregui, F. Perez and E. Shafirovich: J. Alloy. Compd., 826 (2020) 154228.
  22. W. Liu, S. Huang, C. Ye, L. Jia, Y. Kang, J. Sha, B. Chen, Y. Wu and H. Xiong: J. Mater. Sci. Technol., 149 (2023) 127.
  23. R. K. Khatirkar and B. S. Murty: Mater. Chem. Phys., 123 (2010) 247.
  24. G. K. Rane, U. Welzel, S. R. Meka and E. J. Mittemeijer: Acta Mater., 61 (2013) 4524.
  25. L. Zhang, L. Yu, Y. Liu, C. Liu, H. Li and J. Wu: Mater. Sci. Eng. A, 695 (2017) 66. https://doi.org/10.1016/j.msea.2017.04.020
  26. Y. Q. Qin, C. Y. Deng, B. Ma, Y. F. Zhang, L. M. Luo and Y. C. Wu: J. Alloy. Compd., 960 (2023) 170380.
  27. K.-S. Jaw, C.-K. Hsu and J.-S. Lee: Thermochim. Acta, 367 (2001) 165.
  28. J. Nelson, M. Ghadyani, C. Utton and P. Tsakiropoulos: Materials, 11 (2018) 1579.