• Title/Summary/Keyword: Ultra Wide Band

Search Result 373, Processing Time 0.033 seconds

Interference Cancellation Using a Modified Transmitter and Partial Rake Combining for UWB Communication Systems (UWB 시스템에서 변형된 전송구조와 PRAKE를 이용한 간섭 제거 기법)

  • Han Seung-youp;Woo Choong-chae;Lee Jae-gu;Hong Dae-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.102-108
    • /
    • 2006
  • In this paper, we propose an interference cancellation(IC) scheme using a partial Rake(PRAKE) combining in ultra-wideband(UWB) multipath fading channels. In this IC scheme, differently from the conventional transmitter model, which employs a guard interval between each frame, the guard interval is employed between each slot for estimating the multiple access interference(MAI). The UWB systems using the proposed IC scheme have little performance degradation without regard to the number of user, while the conventional UWB systems have a significant performance degradation according to the number of user. In order to reduce the receiver complexity, the PRAKE combining of post-canceled signal and the partial user IC scheme are also proposed.

Performance of MC-CDMA Based UWB System (MC-CDMA 방식을 적용한 UWB 시스템의 성능평가)

  • Kim Cheol-Soon;Kwak Kyung-Sup;Lee Hyung-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In this paper, we evaluated Ultra Wideband MC-CDMA system which is the combination of DS-CDMA and OFDM systems, which have been drafting in current standardization for IEEE802.15.3a. Too many Rake Fingers are demanded in the DS-CDMA system to detect multi-path signals, which results in high system complexity. OFDM system fails to qualify for FCC certification unless frequency hopping is off. MC-CDMA has lower complexity compared to DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. The MC-CDMA system is analyzed by a numerical formula and compared with DS-CDMA and OFDM by a computer simulation.

  • PDF

A 0.18-μm CMOS UWB LNA Combined with High-Pass-Filter

  • Kim, Jeong-Yeon;Kim, Chang-Wan
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • An Ultra-WideBand(UWB) Low-Noise Amplifier(LNA) is proposed and is implemented in a $0.18-{\mu}m$ CMOS technology. The proposed UWB LNA provides excellent wideband characteristics by combining a High-Pass Filter (HPF) with a conventional resistive-loaded LNA topology. In the proposed UWB LNA, the bell-shaped gain curve of the overall amplifier is much less dependent on the frequency response of the HPF embedded in the input stage. In addition, the adoption of fewer on-chip inductors in the input matching network permits a lower noise figure and a smaller chip area. Measurement results show a power gain of + 10 dB and an input return loss of more than - 9 dB over 2.7 to 6.2 GHz, a noise figure of 3.1 dB at 3.6 GHz and 7.8 dB at 6.2 GHz, an input PldB of - 12 dBm, and an IIP3 of - 0.2 dBm, while dissipating only 4.6 mA from a 1.8-V supply.

Performance Analysis of M-ary Multiple Access UWB System Using Modified Hermite Polynomial Pulses (Modified Hermite Polynomial 펄스들을 사용하는 M진 다중접속 UWB 시스템의 성능 분석)

  • Hwang, Jun-Hyeok;Kim, Suk-Chan;Park, Dong-Chan;Kim, Byoung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.909-916
    • /
    • 2008
  • In this paper, we propose and analyze M-ary pulse order time hopping multiple access ultra wideband (PO-THMA UWB) system using modified Hermite polynomial (MHP). The MHP pulses have a mutually orthogonal property between different ordered pulses and that property makes simultaneous transmission at the same time slot regardless of collision in the THMA-UWB system. Therefore, we derive the cross-correlation furlction of MHP pulses and analyze the BER of the proposed system and show that the BER performance and the transmission capacity are improved dramatically when compared with those of conventional THMA-UWB system.

Selfish Retransmission Scheme in IR-UWB System (IR-UWB 통신 기반의 이기적 재전송 프로토콜)

  • Kang, Ji-Myung;Park, Young-Jin;Lee, Soon-Woo;Kim, Yong-Hwa;Kim, Kwan-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper, we focus on the retransmission following transmission failure in impulse radio ultra wideband (IR-UWB). The reasons of transmission failure are classified and a new 'selfish' retransmission protocol is proposed because time hopping can support multiple transmissions at the same time. Selfish retransmission protocol retransmits packets immediately without any kind of timeout or channel observation. Simulation results show that the proposed protocol improves throughput up to 50% and decreases retransmission delay also up to 70%, compared to a conventional retransmission system in IR-UWB.

Performance Evaluation of Time Hopping Pulse Position Modulated Ultra-Wideband System for Home Sensor Network (홈 센서 네트워크를 위한 주파수 도약 펄스 위치 변조된 초 광대역 시스템의 성능 평가)

  • Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • The rapid proliferation of in-home and office information applications and services is driving the need for new wireless technologies enabling wideband short range multimedia communications. Due to the growing demand for higher quality media and faster wireless connections, several IEEE standardization groups are considering very high data rate alternatives physical layer(s) for Wireless Personal Area Network (WPAN). The Ultra Wide Band (UWB) multiple access technology based on very narrow pulse transmission, is one viable candidate for these applications providing very high bit rates services, low power consumption and accurate positioning capability. In this paper we provide a methodology to evaluate the UWB system BER performance in UWB wireless fading networks with power controlled UWB devices are considered. Results can be used to analyze the performance of a given network topology and to provide useful design ideas for an UWB home sensor network.

  • PDF

A Study of Motion Recognition Using IR-UWB Radar (IR-UWB 레이다를 이용한 모션 인식에 관한 연구)

  • Lee, Jin-Seop;Yoon, Jung-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 2019
  • Ultra-wideband(UWB) is a technology that can transmit and receive signals at high speeds using a very short signal of wideband of several GHz, and has been recently used in the field of radar technology. Impulse radio(IR)-UWB radar is used in the field of motion recognition with high resolution. In this work, we studied motion recognition using IR-UWB radar. We constructed a development environment to acquire data about motion and implemented a signal processing algorithm for performance enhancement. Based on the signal processing result, the performance was verified through feature extraction and learning of motion.

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

MB-OFDM UWB modem SoC design (MB-OFDM 방식 UWB 모뎀의 SoC칩 설계)

  • Kim, Do-Hoon;Lee, Hyeon-Seok;Cho, Jin-Woong;Seo, Kyeung-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.806-813
    • /
    • 2009
  • This paper presents a modem chip design for high-speed wireless communications. Among the high-speed communication technologies, we design the UWB (Ultra-Wideband) modem SoC (System-on-Chip) Chip based on a MB-OFDM scheme which uses wide frequency band and gives low frequency interference to other communication services. The baseband system of the modem SoC chip is designed according to the standard document published by WiMedia. The SoC chip consists of FFT/IFFT (Fast Fourier Transform/Inverse Fast Fourier Transform), transmitter, receiver, symbol synchronizer, frequency offset estimator, Viterbi decoder, and other receiving parts. The chip is designed using 90nm CMOS (Complementary Metal-Oxide-Semiconductor) procedure. The chip size is about 5mm x 5mm and was fab-out in July 20th, 2009.