• Title/Summary/Keyword: Ultra High Carbon

Search Result 124, Processing Time 0.022 seconds

A Survey of water pollution and the development of water treatment system on agricultural Area (농어촌의 수질오염과 수질특성에 적합한 정수 처리시스템의 개발에 관한 연구(1))

  • 정문호;김영규;조태석;배현주;신명옥;김수연;김민지;김민영;김수복
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • The purpose of this study was to investigate the removal effect and variation of contaminated water by various water treatment processes using sediment filter, activated carbon, photocatalysis, reverse osmosis, ultra violet sterilizer and ultra filtration. The removal effect of chloride and trace metal was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon but high in impregnated activated carbon. The removal effect of TCE was low in sand and ultra filter system as compared with activated carbon. Ultra filtration process was effective for purify agricultural water without E.coli. Reverse osmosis was effective to remove heavy metal and activated carbon was effective to remove halogenated organic chemical compound. The flux and the removal effect of COD in spiral wound ultrafilter were higher than the hollow fiber ultrafilter.

  • PDF

Effect of Coiling Temperature on the Annealed Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Yinghua;Park, Young-Koo;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.65-68
    • /
    • 2008
  • The present work was performed to investigate the effect of coiling temperature on the annealed texture in Cu/Nb-added ultra-low-carbon steels. The ultra-low-carbon steels were coiled at 650 and $720^{\circ}C$, respectively. The result showed that the Cu-added ultra-low-carbon steel at a low coiling temperature produced a desirable annealed texture related to good formability. On the other hand, Nb-added ultra-low-carbon steel at a high coiling temperature also produced a desirable texture. This is attributed to the effect of Nb, which retards recrystallization during the coiling process.

A Study on the Removal Effect of Bacteria and E. Coli. by Water Treatment Processes using Activated Carbon and Membrane (정수처리공정에 따른 일반세균과 대장균군의 제거에 관한 연구)

  • 조태석;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 1997
  • This study has been designed to check the removal effect of contaminated water by various water treatmemt processes using sediment filter, activated carbon, reverse osmosis membrane, ultra vilolet sterilizer and ultra filtration and then to analyze the change of pH, the concentration of chlorides, bacteria and E. coli. after 24 hours. pH has increased as much as 0.15-0.32 by activated carbon but decreased sharply by reverse osmosis treatment after 24 hours. The removal effect of chloride was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon. Ultra filtration process was effective for purify agricultural water containg bacteria and E.coli.

  • PDF

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel (열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향)

  • Kang, C.Y.;Kwon, M.K.;Kim, C.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

Study on the Spheroidization of Cementite by Controlled-Rolling and Martensitic Nucleation and its Growth during Cooling in Ultra High Carbon Steel (초고탄소강의 제어압연에 의한 세멘타이트의 구상화와 냉각중 마르텐사이트의 핵발생과 성장의 현상론적 고찰)

  • Choi, C.S.;Yoon, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.98-106
    • /
    • 1993
  • Ultra high carbon steel (Fe-1.4%C) was prepared by means of a high frequency induction furnace. The preferred nucleation site of martensite was observed. The changes of hardness and impact thoughness due to tempering temperatures, and the spheroidization of cementite by controlled -rolling were also studied for the steel. The preferred nucleation site of martensite in the ultra high carbon steel is prior austenite grain boundary. The hardness of the steel is slightly increased up to about $300^{\circ}C$, and then decreased with further tempering temperature. However, the impact energy keeps a almost constant value, independent of the tempering temperature. The spheroidization of cementite is accelerated as the reduction in thickness per rolling pass is increased and the number of the rolling passes becomes greater.

  • PDF

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method

  • Yu, Hui-Il;Kim, Ho-Seok;Hong, Bong-Geun;Sin, Ui-Seop;Mun, Se-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.237.2-237.2
    • /
    • 2016
  • A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (C.C) composites using a vacuum plasma spray system. By adopting a SiC buffer layer, we successfully integrated C.C composites with a $100-{\mu}m-thick$ protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increased growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. From these results, it was shown that the addition of a SiC intermediate layer provided optimal surface conditions during the VPS procedure to enhance adhesion between C.C and HfC (without delamination). The thermal ablation test results shows that the HfC coating layer perfectly protected inner C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments.

  • PDF

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.