• Title/Summary/Keyword: Ultimate tensile force

Search Result 54, Processing Time 0.021 seconds

Development and Performance Experiment of Iso-tensioning System using Electrical Resistance Loadcell (전기저항식 로드셀을 이용한 균등긴장시스템 개발 및 성능실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.220-226
    • /
    • 2016
  • Because MS(Multi-Strand) cables consist of many strands, a jacking force is applied to each strand one by one for cable construction. All strands should have an equal tensile force when the last one is wedged. This is the core technology for MS iso-tensioning. In this study, a new MS cable iso-tensioning system was developed for controlling and jacking the high-strength strands, with an ultimate tensile strength of 2,200MPa, for a stay cable of extra-dosed/cable-stayed bridges. The newly developed iso-tensioning system consists of electrical resistance load cells, hydraulic jacking devices, hydraulic pumps, and integrated controllers. Moreover, it is embedded with an algorithm that can control and predict the variations in tensile forces of the Master and Slave strands in real time. Actual experiments were carried out to verify the function and performance of the newly developed system. This system was applied successfully to the stay cable construction of 2nd Tae-in extra-dosed bridge in Gwangyang.

Repair and Rehabilitation of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트 보의 보수·보강)

  • Kwak, Kae-Hwan;Kim, Won-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • This study is to investigate its use by applying stainless steel wire mash reinforcement method of construction, which is newly developed, on the high strength concrete beam mixed with polymer-steel fiber. In this test, it is investigated and observed such as follows: the ultimate load, the initial flexure crack load, the initial diagonal tension crack load, the relation between load and deflection, load-strain relation, and also crack growth and fracture aspect by increasing load. The results of this test are; first, the stainless steel wire showed some useful reinforcement effects in multiplying the steel's resisting force of moment to the tensile force of beam or slab: second, the promoting strength and internal force was made in the process of the integration at the same reaction by using the penetrating polymer-mortar with an excellent durability and physical property. On the basis of this results, because such instances in applying stainless steel wire Mash reinforcement method of construction have been few so far, through the experimental investigation such as this test over and over again, the efficient and useful method must be developed for the practice.

A Study on the Stability Analysis of Reinforced Embankment on the Soft Ground (연약지반상의 보강성토의 안정해석에 관한 연구)

  • 임종철;전미옥;박이근;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.285-296
    • /
    • 1999
  • Preloading method is used to prevent the settling of a foundation and to increase the strength of ground by consolidation settlement in advance. But, the embankment used in preloading method brings large deformation and sliding failure in the soft ground. Recently, reinforcement method is often used in embankment in order to prevent sliding failure. But, until now, the research on the stability analysis considering both the rate of strength increase of clay by embankment load and increase of resistance force by the geosynthetics in the embankment body is not found. In this study, the stability analysis program(REAP) for embankment including these two points is developed. By this program(REAP), the stability analysis can be done about during the gradual increase of embankment and the stability counterplan can be established when the safety factor is lower than allowable safety factor of design. After calculating the position of sliding failure surface, the force of geosynthetics which is selected by either the effective tensile strength or tensile force caused by the displacement of soil mass in this position is applied to stability analysis. And the increase of resisting moment can be calculated by this force. Also, the construction period can be estimated and the time for the appropriate counterplan can be decided in order to maintain the stability of embankment. And then, safe and economical embankment design can be performed.

  • PDF

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

Simplification of the Flexural Capacity of SFR-UHPCC Rectangular Beam

  • Han, Sang-Mook;Wu, Xiang-Guo;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, flexure behavior of steel fiber reinforcement ultra high performance cementations composites (SFR-UHPCC) has been analyzed by equivalent stress block. Pulling-out tensile force of steel fiber with concrete matrix was induced. An appropriate flexure evaluation formula, i.e. semi-analytical formula, was established based on rectangular cross section beam for comparing with shear capacity and ultimate load of SFR-UHPCC beam. Finally, the semi-analytical formula has been simplified for the convenience of design work. Experimental results and theoretical shear strength are shown to compare with the formula proposed by this paper. The theory formula has a good prediction of failure type of SFR-UHPCC.

  • PDF

A Study on the Development Length of Fiber Reinforced Polymer Tendon by Direct Pullout Test (직접인발실험에 의한 FRP Tendon의 정착 길이 산정에 관한 연구)

  • Lee, Seung-Joo;Jung, Woo-Tai;Park, Young-Hwan;Hwang, Geum-Sic
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.837-840
    • /
    • 2006
  • This paper presents the experimental results on the development length of FRP tendons by direct pullout test. Two types of FRP tendons, namely, CFCC tendon and KICT tendon, and PS tendon were investigated. The development length defined as the minimum embedment length required to develop the ultimate tensile strength was suggested using the test results. It was found that the development length from the direct pullout test was greater than those of various standards. This may result from the fact that the wedge effect does not exist because there is no prestressing force in the direct pullout test. Further study and experiment are necessary to derive the reasonable development length for FRP tendon.

  • PDF

An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.459-465
    • /
    • 2016
  • In this paper, it was performed the fatigue test to examine the effect of cyclic loading for the simple T-joint. Axial force of bolt by clamping and the change of the force by applied load were measured in the joint. And the bolt force, the failure mode and the fatigue strength under cyclic loading were investigated. The parameters of the tension joint were set to be the flange thickness and the diameter of bolt to a different stiffness of the joint in response to the combination. From the fatigue test, failure mode of tensile joints under cyclic loading could be evaluated using a static ultimate load of the specific failure mode in EC3. The fatigue strength of the tension joints was considerably higher than the fatigue strength of the EC3(36) that does not consider a lever action. However, the additional axial force by lever action occurs to an increase in the axial force of the bolt it requires a careful evaluation of the fatigue strength.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.