• Title/Summary/Keyword: Uav

Search Result 1,796, Processing Time 0.027 seconds

Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met (UAV와 ENVI-met을 활용한 공간 유형별 열환경 특성 분석)

  • KIM, Seoung-Hyeon;PARK, Kyung-Hun;LEE, Su-Ah;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.28-43
    • /
    • 2022
  • This study classified UAV image-based physical spatial types for parks in urban areas of Changwon City and analyzed thermal comfort characteristics according to physical spatial types by comparing them with ENVI-met thermal comfort results. Physical spatial types were classified into four types according to UAV-based NDVI and SVF characteristics. As a result of ENVI-met thermal comfort, the TMRT difference between the tree-dense area and other areas was up to 30℃ or more, and it was 19. 6℃ at 16:00, which was the largest during the afternoon. As a result of analyzing UAV-based physical spatial types and thermal comfort characteristics by time period, it was confirmed that the physical spatial types with high NDVI and high SVF showed a similar to thermal comfort change patterns by time when using UAV, and the physical spatial types with dense trees and artificial structures showed a low correlation to thermal comfort change patterns by time when using UAV. In conclusion, the possibility of identifying the distribution of thermal comfort based on UAV images was confirmed for the spatial type consisting of open and vegetation, and the area adjacent to the trees was found to be more thermally pleasant than the open area. Therefore, in the urban planning stage, it is necessary to create an open space in consideration of natural covering materials such as grass and trees, and when using artificial covering materials, it is judged that spatial planning should be done considering the proximity to trees and buildings. In the future, it is judged that it will be possible to quickly and accurately identify urban climate phenomena and establish urban planning considering thermal comfort through ground LIDAR and In-situ measurement-based UAV image correction.

A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV (UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템)

  • Kim, Jae-Wan;Yoon, Jun-Yong;Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver

  • Lee, Byung-Yoon;Yoo, Dong-Wan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This paper addresses the performance of three different types of attitude control systems for the Quad-rotor UAV to perform the flip maneuver. For this purpose, Quad-rotor UAV's 6-DOF dynamic model is derived, and it was used for designing an attitude controller of the Quad-rotor UAV. Attitude controllers are designed by three different methods. One is the open-loop control system design, another is the PD control system design, and the last method is the sliding mode control system design. Performances of all controllers are tested by 6-DOF simulation. In case of the open-loop control system, control inputs are calculated by the quad-rotor dynamic model and thrust system model that are identified by the thrust test. The 6-DOF realtime simulation environment was constructed in order to verify the performances of attitude controllers.

Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV

  • Kim, Gu Hyeok;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • An UAV (Unmanned Aerial Vehicle) is a flight system that is designed to conduct missions without a pilot. Compared to traditional airborne-based photogrammetry, UAV-based photogrammetry is inexpensive and can obtain high-spatial resolution data quickly. In this study, we aimed to classify the land cover using high-spatial resolution images obtained using a UAV. An RGB camera was used to obtain high-spatial resolution orthoimage. For accurate classification, multispectral image about same areas were obtained using a multispectral sensor. A DSM (Digital Surface Model) and a modified NDVI (Normalized Difference Vegetation Index) were generated using images obtained using the RGB camera and multispectral sensor. Pixel-based classification was performed for twelve classes by using the RF (Random Forest) method. The classification accuracy was evaluated based on the error matrix, and it was confirmed that the proposed method effectively classified the area compared to supervised classification using only the RGB image.

CFD Analysis for Ground Effect of Tilt-Rotor UAV (틸트로터 무인기의 지면 효과 분석을 위한 전산해석)

  • Kim, Cheol-Wan
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

A Study on Visual Servoing Image Information for Stabilization of Line-of-Sight of Unmanned Helicopter (무인헬기의 시선안정화를 위한 시각제어용 영상정보에 관한 연구)

  • 신준영;이현정;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.600-603
    • /
    • 2004
  • UAV (Unmanned Aerial Vehicle) is an aerial vehicle that can accomplish the mission without pilot. UAV was developed for a military purpose such as a reconnaissance in an early stage. Nowadays usage of UAV expands into a various field of civil industry such as a drawing a map, broadcasting, observation of environment. These UAV, need vision system to offer accurate information to person who manages on ground and to control the UAV itself. Especially LOS(Line-of-Sight) system wants to precisely control direction of system which wants to tracking object using vision sensor like an CCD camera, so it is very important in vision system. In this paper, we propose a method to recognize object from image which is acquired from camera mounted on gimbals and offer information of displacement between center of monitor and center of object.

  • PDF

Routing in UAV based Disruption Tolerant Networks (무인항공기 기반 지연 허용 네트워크에서의 라우팅)

  • Kim, Tea-Ho;Lim, Yu-Jin;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.521-526
    • /
    • 2009
  • Disruption/Delay Tolerant Network(DTN) is a technology for interconnecting partitioned networks. These days, DTN, especially routing in DTN, draws significant attention from the networking community. In this paper, we investigate DTN routing strategies for highly partitioned ad hoc networks where Unmanned Aerial Vehicles (UAVs) perform store-carry-forward functionality for improved network connectivity. Also we investigate UAV trajectory control mechanisms via simulation studies.

Structural Vibration Analysis of Smart UAV 4-Degree of Freedom Ground Test System (스마트 무인기 4자유도 지상시험치구 구조진동해석)

  • Park, Kang-Kyun;Choi, Hyun-Chul;Kim, Dong-Man;Kim, Dong-Hyun;Ahn, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.593-598
    • /
    • 2009
  • In this study we present results for the design of ground test system for 4 degree of freedom(DOF) control test is one of the smart UAV ground test. This system is equipped with real smart UAV and Z direction DOF and 3 direction rotation DOF, Ensuring safe operation of the Smart UAV is a top priority. To this end, it is required to do structure analysis and test verification to confirm the design margin and safety. Based on the analysis, the ground test system has been redesigned to meet the structural conditions.

  • PDF

A Performance Analysis of a Glidepath Tracking Algorithm for Autolanding of a UAV (무인항공기 자동착륙을 위한 활강궤적 추종 알고리듬 성능분석)

  • Choi, Young-Hyun;Koo, Hueon-Joon;Kim, Jong-Sung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • Automatic landing of UAVs receives increasing interest these days, with increasing number of the developed UAV systems. In this paper, a glidepath tracking algorithm of the subscale UAV was proposed and the performance was analyzed. Flight data analysis shows that the existing autolanding flight control algorithm has a classical type glidepath control. This paper presents an alternative glidepath tracking strategy based on embedded flight control law. The performance of the proposed strategy was investigated through the TDP(Touch Down Point) error analysis with regard to various flight environment: steady headwind, atmospheric disturbance, communication transfer delay. It was verified that the proposed glidepath tracking strategy can be successfully applied to the practical autolanding of UAV systems.

Development of monitoring system for UAV image acquisition and Accuracy Analysis of Orthophoto Mosaic image (UAV 영상획득 모니터링시스템 개발과 정사영상 정확도 분석)

  • Han, Seung-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.65-66
    • /
    • 2014
  • 좁은지역에 대한 지형정보의 획득은 저고도 UAV시스템을 이용하는 것이 경제적이다. 최근 자동항법 UAV의 발전은 저고도 고해상도 영상을 원하는 주기로 얻을 수 있어 많은 분야에 응용하고 있다. 이러한 UAV시스템은 지상관제센터와 비행체 간의 긴밀한 통신이 이루어져야 하며 촬영 중 영상의 획득 여부를 모니터링할 수 있어야 한다. 본 연구에서는 NASA가 개발한 Worldwind를 커스터마이징하여 실시간 영상획득 모니터링 s/w를 개발하였다. 또한 개발시스템을 이용하여 정사영상 모자익을 실시하였으며 이에대한 정확도 분석을 실시하였다. 분석결과 검사점에 대해 정사모자익영상의 수평위치 정확도를 분석한 결과 X좌표에서 평균 0.181m, Y좌표에서 평균 0.203m의 편차를 보임으로써 1:1,000~5,000축척의 수치지도제작이 가능할 것으로 판단된다.

  • PDF