DOI QR코드

DOI QR Code

Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met

UAV와 ENVI-met을 활용한 공간 유형별 열환경 특성 분석

  • KIM, Seoung-Hyeon (Dept. of Smart Ocean Environmental Energy, Changwon National University) ;
  • PARK, Kyung-Hun (School of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • LEE, Su-Ah (Dept. of Environmental Engineering, Changwon National University) ;
  • SONG, Bong-Geun (Institute of Industrial Technology, Changwon National University)
  • 김성현 (창원대학교 스마트환경에너지공학협동과정) ;
  • 박경훈 (창원대학교 토목환경화공융합공학부) ;
  • 이수아 (창원대학교 환경공학과) ;
  • 송봉근 (창원대학교 산업기술연구원)
  • Received : 2022.01.21
  • Accepted : 2022.02.11
  • Published : 2022.03.31

Abstract

This study classified UAV image-based physical spatial types for parks in urban areas of Changwon City and analyzed thermal comfort characteristics according to physical spatial types by comparing them with ENVI-met thermal comfort results. Physical spatial types were classified into four types according to UAV-based NDVI and SVF characteristics. As a result of ENVI-met thermal comfort, the TMRT difference between the tree-dense area and other areas was up to 30℃ or more, and it was 19. 6℃ at 16:00, which was the largest during the afternoon. As a result of analyzing UAV-based physical spatial types and thermal comfort characteristics by time period, it was confirmed that the physical spatial types with high NDVI and high SVF showed a similar to thermal comfort change patterns by time when using UAV, and the physical spatial types with dense trees and artificial structures showed a low correlation to thermal comfort change patterns by time when using UAV. In conclusion, the possibility of identifying the distribution of thermal comfort based on UAV images was confirmed for the spatial type consisting of open and vegetation, and the area adjacent to the trees was found to be more thermally pleasant than the open area. Therefore, in the urban planning stage, it is necessary to create an open space in consideration of natural covering materials such as grass and trees, and when using artificial covering materials, it is judged that spatial planning should be done considering the proximity to trees and buildings. In the future, it is judged that it will be possible to quickly and accurately identify urban climate phenomena and establish urban planning considering thermal comfort through ground LIDAR and In-situ measurement-based UAV image correction.

본 연구는 창원시 도시지역 내 공원을 대상으로 UAV 영상 기반 물리적 공간 유형을 분류하고, ENVI-met 열 쾌적성 결과와의 비교를 통해 물리적 공간 유형에 따른 열 쾌적성 특성을 분석하였다. 물리적 공간 유형은 UAV 기반 NDVI, SVF 특성에 따라 4개 유형으로 분류하였다. ENVI-met 열 쾌적성 결과는 수목 밀집지역의 TMRT가 그 외 지역보다 최대 30℃ 이상의 차이를 보였으며, 오후 시간대 중에서는 수목 밀집지역과 다른 지역의 TMRT 차이가 16시에 19.6℃로 가장 큰 것으로 나타났다. UAV 기반 물리적 공간 유형과 시간대별 열 쾌적성 특성 분석결과 NDVI가 높고, SVF가 높은 공간 유형에 대해 UAV 활용 시 시간대별 열 쾌적성 변화 패턴과 유사한 경향을 보이는 것을 확인하였으나, 수목 및 인공 구조물 등이 밀집된 지역에 대해서는 상대적으로 UAV 기반 물리적 환경 유형과 상관관계가 낮은 것으로 나타났다. 결론적으로 개활지 및 식생으로 이루어진 공간 유형에 대해 UAV 영상 기반 열 쾌적성 분포 파악 가능성을 확인하였으며, 수목 인접지역이 개활지보다 열적으로 쾌적한 것으로 도출되었다. 따라서, 도시계획 단계에서 개활 공간은 잔디 및 수목 등 자연피복재질을 고려하여 조성할 필요가 있으며, 인공피복재질 활용 시 수목, 건물과의 인접성 등을 고려한 공간계획이 이루어져야 할 것으로 판단된다. 향후 지상LiDAR 및 현장 측정 기반 UAV 영상 보정을 통해 신속·정확한 도시기후 현상 규명 및 열 쾌적성을 고려한 도시계획 수립이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초 연구사업이며(No. NRF-2019R1I1A1A01063568), 환경부의 폐자원에너지화 재활용 전문인력 양성사업으로부터 지원을 받았습니다(YL-WE-19-001).

References

  1. An, S.M., Son, H.G., Lee, K.S and Yi, C.Y. 2016. A study of the urban tree canopy mean radiant temperature mitigation estimation. Journal of KILA 44(1):93-106.
  2. Ambrosini, D., Galli, G., Mancini, B., Nardi, I and Sfarra S. 2014. Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met® climate model. Sustainability 6(10):7013-7029. https://doi.org/10.3390/su6107013
  3. ASHRAE, A. H. 2001. Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlant.
  4. Changwon-si, 2021. Changwon city urban biotope maps and wind road creation plan service pp.251-266.
  5. Dimitrov, S., Georgiev G., Georgieva M., Gluschkova, M., Chepisheva V., Mirchev, P and Zhiyanski, M. 2018. Integrated assessment of urban green infrastructure condition in Karlovo urban area by in-situ observations and remote sensing. One Ecosytem. 3:e21610 doi: 10.3897/oneeco.3.e21610.
  6. Gaitani, N., Burud, I., Thiis, T and Santamouris, M. 2017. High-resolution spectral mapping of urban thermal properties with unmanned aerial vehicles. Build. Environ. 121:215-224. https://doi.org/10.1016/j.buildenv.2017.05.027
  7. Hong, J.W., Hong, J.K., Lee, S.E and Lee, J.W. 2013. Spatial distribution of urban heat island based on local climate zone of automatic weather station in Seoul metropolitan area. Atmosphere. Korean Meteorological Society 23(4):413-424.
  8. Kang, D.I., Moon, H.G., Sung, S.Y and Cha, J.G. 2018. Applicability of UAV in urban thermal environment analysis. J. KILA 46(2):52-61.
  9. Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L and Eklundh, L. 2019. Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sensing 11, 567. https://doi.org/10.3390/rs11050567
  10. Kim, H.J., Kim, J.Y and Kim, Y.I. 2019. A study on the object-based building extraction using UAV imagery. The Korea Society For GeospatIal Information System 27(4): 21-28. https://doi.org/10.7319/kogsis.2019.27.4.021
  11. Kim, K.H., Kang Y.E., Son, S.W., Kim and D.W., Yu, J.J. 2020. A study on the spatial strategies in response to heat waves through analyzing urban thermal environment by UAV: based on the urban regeneration project in Yeongdo-gu, Busan. Journal of the Korean Association of Geographic Information Studies 9(1):191-203. https://doi.org/10.25202/JAKG.9.1.13
  12. Loughner, C.P., Allen, D.J., Zhang, D.L., Pickering, K.E., Dickerson, R.R and Landry, L. 2012. Roles of urban tree canopy and buildings in urban heat island effects: parameterization and preliminary results. Journal of Applied Meteorology and Climatology 51(10):1775-1793. https://doi.org/10.1175/JAMC-D-11-0228.1
  13. Lee, H.J., Cho, S.S., Kang, M.S., Kim, J., Lee, H.T., Lee, M.S., Jeon, J.Y., Yi, C.Y., Janicke, B., Cho, C.B., Kim, R.K., Kim, B.K and Kim, H.S. 2018. The quantitative analysis of cooling effect by urban forests in summer. Korean Journal of Agricultural and Forest Meteorology 20(1):73-87. https://doi.org/10.5532/KJAFM.2018.20.1.73
  14. Lee, W.S., Gwak, H.G., Jung, S.G and Park, K.H. 2007. An assessment of urban amenity using physical environmental factors. Journal of the Korean Association of Geographic Information Studies 10(1):169-182.
  15. Lee, W.S., Jung, S.G., Park, K.H and Kim, K.T. 2010. Analysis of urban thermal environment for environment-friendly spatial plan. Journal of the Korean Association of Geographic Information Studies 13(1):142-154. https://doi.org/10.11108/KAGIS.2010.13.1.142
  16. Mun, H.S., Song, B.G., Seo, K.H., Kim, T.H and Park, K.H. 2020. Analysis of PM2.5 distribution contribution using GIS spatial Interpolation - focused on Changwon-si urban area -. Journal of the Korean Association of Geographic Information Studies 23(2): 1-20. https://doi.org/10.11108/KAGIS.2020.23.2.001
  17. Ng, E., Chen, L., Yang Y and Yuan, C. 2012. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong, Building and Environment, 47:256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
  18. Naughton, J and McDonald, W. 2019. Evaluating the variability of urban land surface temperatures using drone observations. Remote Sensing 11, 1722. https://doi.org/10.3390/rs11141722
  19. Oke, T.R. 1981. Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of Climatology 1(3):237-254. https://doi.org/10.1002/joc.3370010304
  20. Oke, T.R. 1987. Boundary layer climates (2nd). London. Methuen. pp.1-10.
  21. Oke, T.R. 2004. Initial guidance to obtain representative meteorological observations at urban sites. Geneva: World Meteorological Organization 81.
  22. Panagiotis, T.N., Emmanuel, V., Marina-Panagiota P.N., Charalampopoulos, I and Matzarakis, A. 2017. Assessment of continuous sky view factor based on ultra-high resolution natural colour images acquired by remotely piloted airborne systems for applications in an urban area of Athens. International Journal of Remote Sensing 38(20):5814-5829. https://doi.org/10.1080/01431161.2017.1346845
  23. Park, S.K. 2013. A way for creating human bioclimatic maps using human thermal sensation (comfort) and applying the maps to urban and landscape planning and design. Journal of the Korean Institute of Landscape Architecture 41(1):21-33. https://doi.org/10.9715/KILA.2013.41.1.021
  24. Park, J.C., Lee, J.S., Suk, A.S and Kim, M.K. 2013. Correlation between urbanization rate in local scale and extreme climate indices. Journal of climate research 8(3): 185-201. https://doi.org/10.14383/cri.2013.8.3.185
  25. Park, J.E., Heo, B.Y and Yun Sunwoo, Y. 2016. A study on human damage due to heat wave by region, Journal of Korean Society of Hazard Mitigation. doi: 10.9798/kosham.2016.16.1.103.
  26. Rouse, J.W., R.H. Haas, J.A. Schell and G.W. Deering. 1973. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium 1:309-317.
  27. Song, B.G and Park, K.H. 2011. The classification of spatial patterns considering formation parameters of urban climate - The case of Changwon city, South Korea-. Journal of environmental impact assessment 20(3):299-311. https://doi.org/10.14249/EIA.2011.20.3.299
  28. Song, B.G and Park, K.H. 2013. Air ventilation evaluation at nighttime for the construction of wind corridor in urban area. Journal of the Korean Association of Geographic Information Studies 16(2):16-29. https://doi.org/10.11108/KAGIS.2013.16.2.016
  29. Song, B.G., Park, K.H and Jung, S.G. 2014. Validation of ENVI-met model with In situ measurements considering spatial characteristics of land use yypes. Journal of the Korean Association of Geographic Information Studies, 17(2):156-172. https://doi.org/10.11108/KAGIS.2014.17.2.156
  30. Song, B.G and Park, K.H. 2019. A study on the relationship between land cover type and urban temperature - focused on Gimhae city -. Journal of the Korean Association of Geographic Information Studies 22(2):65-81. https://doi.org/10.11108/KAGIS.2019.22.2.065
  31. Song, B.G and Park, K.H. 2020. Verification of accuracy of unmanned aerial vehicle (UAV) land surface temperature images using in-situ data. Remote Sensing 12(2): 288. https://doi.org/10.3390/rs12020288
  32. Stewart, I.D and Oke, T.R. 2012. Local climate zones for urban temperature studies. The Bulletin of the American Meteorological Society 93(12):1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  33. Tsoka S., Tsikaloudaki, A and Theodosiou, T. 2018. Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society, DOI:10.1016/J.SCS.2018.08.009.
  34. Wang, M., Chang, H.C., Merrick, J.R and Amati, M. 2016. Assessment of solar radiation reduction from urban forests on buildings along highway corridors in Sydney. Urban Forestry & Urban Greening 15:225-235. https://doi.org/10.1016/j.ufug.2016.01.003
  35. Yeo, I.A., Yee, J.J and Yoon, S.W. 2010. An analysis of urban temperature and air-conditioning energy characteristics by eco-friendly urban planning. Journal of the Architectural Institute of Korea (JAIK), 26(2):255-265.