• Title/Summary/Keyword: UWB pulse Generator

Search Result 24, Processing Time 0.022 seconds

Coaxial Marx Type Pulse Generator for UWB EM Pulse (UWB 펄스전자파 발생용 원통형 Marx 펄스발생장치개발)

  • Chang, Yong-Moo;Lee, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.121-121
    • /
    • 2010
  • As the industrial technology is getting higher, the pulsed power technology is required from various fields such as thermonuclear fusion energy sources, military applications, electric power distribution, and a variety of new specialized needs. This technology deals with the generation of very high power electromagnetic pulses through fast switching. We fabricated a pulsed power generator, named EMD pulse generator, by using Marx circuit with 200 kV high, 50 ns fast rise time. In this paper, we described about an effect of stray capacitance of coaxial Marx generator, EPG-AM200k, and a comparing the results of experiments and circuit analysis.

  • PDF

Implementation and miniaturization of High Order Derivative Gaussian Pulse Generator for DS-UWB (DS-UWB를 위한 고차 미분 가우시안 펄스 생성기의 소형화와 구현)

  • Kim, Dong-Ho;Bang, Gyeong-Nam;Park, Chong-Dae
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.109-115
    • /
    • 2006
  • In this paper, High order derivative Gaussian pulse generator for DS-UWB communication satisfying the regulation of FCC was proposed and fabricated. In order to transform rectangular signal of 100Mbps to a Gaussian pulse, the fabricated Gaussian pulse generator consists of only two SRD. The output pulse had the widths of 330 psec and amplitudes of 920 mV. In addition, the designed and fabricated dual bandpass filter shows high order derivate characteristics by using micro-strip line and parallel stub to remove WLAN band. We generated the 13th Gaussian pulse restricted frequency spectrum of WLAN band more than -25dB. The pulse had pulse width of 1 nsec and amplitude of 25 mV.

  • PDF

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

UWB Transceiver Modeling Using the TDMG Pulse Generator (TDMG(Time Delay Multiple Gaussian) 펄스 발생기를 이용한 UWB 송수신기 모델링)

  • Ko Young-Eun;Park Jin-Hwan;Bae Bag-Geun;Choi Min-Sung;Bang Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.313-316
    • /
    • 2004
  • In this paper analyzed characteristics of the exist ing pulse of the UWB system, modeled TDMG pulse generator without attenuation of pulse width, Then we designed UWB transceiver which load TDMG pulse generator. Result of Simulation, it had high data rate and low BER. As well as, satisfying the spectrum Mask recommended by the FCC

  • PDF

Design of Impulse generator Using Gain-Switched Semiconductor Laser for UWB (반도체 레이저의 이득스위칭을 이용한 UWB 임펄스 발생기 설계)

  • Kwon Soon-young;Kim Bum-in;Park Chong-dae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.61-66
    • /
    • 2005
  • In this paper, we implemented a impulse generator, the one of the part in UWB(Ultra Wide Band) system using step recovery diode(SRD) and gain-switced semiconductor laser. The impulse generator was consisted of four stages; The first stage used SRD to generate the first impulse for gain switching. The second stage controled current for the suitable gain switching condition. The third was the second impulse generator to generate gaussian pulse. For gain switching, the first impulse was applied to semiconductor laser. In the last stage the gain switched impulse was converted into mono-gaussian pulse. The measured mono-gaussian pulse was 360 psec pulse-width and $-70mV \~ +50mV$ amplitude in time domain. In frequency domain its magnitude and bandwidth was, respectively, -41dBm and 3.6GHz. Accordingly, the impulse generator that we suggested was suitable for UWB systems.

Design of the TDMG pulse generator for ultra-wideband systems (UWB 시스템을 위한 TDMG 펄스 발생기의 설계)

  • Park Jin-Hwan;Bae Bag Geun;Ko Young Eun;Bang Sung Il
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.27-30
    • /
    • 2004
  • This paper has been designed the TDMG(Time Delay Multiple Gaussian) pulse generator for UWB systems and analyzed the characteristics of UWB impulse. Composite two equal Gaussian pulses in a difference time lag, and then investigated TDMG pulse and modeled mathematically. Designed the TDMG pulse generator by ADS(Advanced Design System) to embody by using actual element with such mathematical model. As well as, this paper finally proved an excellence of the TDMG pulse generator by performing analysis through simulation.

  • PDF

A 3~5 GHz Interferer Robust IR-UWB RF Transceiver for Data Communication and RTLS Applications (간섭 신호에 강인한 특성을 갖는 데이터 통신과 위치 인식 시스템을 위한 3~5 GHz 대역의 IR-UWB RF 송수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • This paper presents a IR-UWB(Impulse Radio Ultra-Wide Band) transceiver circuit for data communication and real time location system. The UWB receiver is designed to OOK(On-Off Keying) modulation for energy detection. The UWB pulse generator is designed by digital logic. And the Gaussian filter is adopted to reject side lobe in transmitter. The measured sensitivity of the receiver is -65 dBm at 4 GHz with 1 Mbps PRF(Pulse Repetition Frequency). And the measured energy efficiency per pulse is 20.6 pJ/bit. The current consumption of the receiver and transmitter including DA is 27.5 mA and 25.5 mA, respectively, at 1.8 V supply.

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

A 6.5 - 8.5 GHz CMOS UWB Transmitter Using Switched LC VCO

  • Eo, Yun Seong;Park, Myung Cheol;Ha, Min-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.417-422
    • /
    • 2015
  • A 6.5 - 8.5 GHz CMOS UWB transmitter is implemented using $0.18{\mu}m$ CMOS technology. The transmitter is mainly composed of switched LC VCO and digital pulse generator (DPG). Using RF switch and DPG, the uniform power and sidelobe rejection are achieved irrespective of the carrier frequency. The measured UWB carrier frequency range is 7 ~ 8 GHz and the pulse width is tunable from 1 to 2 ns. The measured energy efficiency per pulse is 2.1 % and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier. The chip core size is $0.72mm^2$.

Design of Impulse Generator using Transistor (트랜지스터를 이용한 임펄스 발생기 설계)

  • 이승식;김재영;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1121-1126
    • /
    • 2003
  • In this paper we show impulse generator which is important component in UWB communication. There is two steps to generate monocycle impulse. In first step, Gaussian pulse was made by operation of transistor switching and operation time of transistor switching. The second step the high pass filter change from Gaussian to Monocycle impulse. The result of this impulse generator is impulse whose pulse width is 0,9 ns in time domain and amplitude is +/-250 ㎷.