• Title/Summary/Keyword: UV-led

Search Result 329, Processing Time 0.026 seconds

Analysis of Electrical/optical Characteristics Using Asymmetric MQW Structures for Deep-UV LEDs (비대칭 MQW 구조를 이용한 Deep-UV LED의 전기적/광학적 특성)

  • Son, Sung-Hun;Kim, Su-Jin;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.5
    • /
    • pp.10-15
    • /
    • 2012
  • In this work, we proposed the asymmetric MQW structure with gradually increased or decreased well thickness from n-layers to p-layers in order to improve the performance of DUV-LEDs. We report the simulation results of electrical/optical characteristics by using the SimuLED program. From the simulation results, we found that B structure with thickness of the wells gradually increased from the n-side to the p-side has the same forward voltage(Vf) as standard structure, but the light output power (Pout) was improved by a factor of 1.17 at 20mA compared with those of the standard structure.

Mesh/grid 기반 투명 전극의 구조 최적화

  • Yun, Min-Ju;Kim, Gyeong-Heon;Park, Sang-Yeong;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.411-412
    • /
    • 2013
  • 최근 UV LED는 생화학 및 의료 산업에서 많은 각광을 받고 있다. 특히, 360nm 이하의 파장대를 갖는 UV LED는 치료 기술, 센서, 물이나 공기 등의 정화와 같은 목적으로 특별한 관심이 쏠리고 있다 [1]. 이러한 지속적인 연구를 통하여 현재까지 UV LED는 거대한 성장을 이루어 왔다. 하지만 이러한 노력에도 불구하고, 360 nm 이하의 UV LED는 여전히 오믹 접촉과 전류 분산이 원활하지 못하다는 문제점을 가지고 있다. 이것은 UV LED의 외부 양자 효율을 감소시키고, 더 나아가 극도로 낮은 광 추출 효율을 초래한다. 최근 이러한 문제를 해결하고자, 투명 전도성 산화물(TCO)을 금속 전극과 p-AlGaN 사이에 삽입해주는데, 현재 가장 널리 사용되는 TCO 물질은 ITO 이다 [2]. 하지만 ITO 물질은 상대적으로 작은 밴드갭(3.3~4.3 eV)과 단파장 빛이 가지는 큰 에너지로 인하여 deep-UV 영역에서는 빛이 투과하지 못하고 대부분 흡수된다 [3]. 따라서 본 연구에서는 기존의 박막형 ITO 투명 전극에 비해 투과도 손실을 최소화할 수 있는 mesh, grid 기반의 투명전극을 연구하였다. Fig. 1과 같이 $5{\mu}m$, $10{\mu}m$, $20{\mu}m$ 간격으로 이루어진 mesh, grid 구조의 투명전극을 구현하여 투과도 손실을 최소화하면서 우수한 전기적 특성을 확보하기 위한 구조 최적화 연구를 진행하였다. 본 연구를 위해 mesh, grid 구조의 ITO 전극 패턴을 photolitho 공정으로 형성하였으며, e-beam 증착법으로 60 nm 두께의 ITO 전극을 형성 후 질소 분위기/$650^{\circ}$에서 30초 동안 RTA 공정을 진행하였다. Fig. 1에서 볼 수 있듯이 mesh, grid의 간격이 증가할수록 투명 전극이 차지하는 면적이 감소하여 투과도는 향상되는 반면, 투명 전극과 p-GaN과의 접촉 면적 또한 감소하므로 오믹 특성이 저하된다. 따라서 투과도 손실을 최소화하면서 우수한 전기적 특성을 확보하기 위해 mesh는 $20{\mu}m$, grid는 $10{\mu}m$ 간격의 구조로 각각 최적화하였다. 그 결과 박막 기반의 ITO 투명전극 대비 최대 약 10% 향상된 투과도를 확보하였으며, I-V Curve 결과를 통하여 p-GaN 기판과 mesh 구조의 ITO 전극 사이에 박막 기반의 투명 전극과 비슷한 수준인 $0.35{\mu}A(@5V)$의 전기적 특성을 확보하였다. 결과적으로 mesh, grid 기반 투명전극의 구조 최적화를 통하여 p-GaN과 원활한 오믹 접촉을 형성하는 동시에 기존 박막형 ITO 투명 전극 구조보다 높은 투과도를 확보할 수 있었다.

  • PDF

In vitro Test of Mycelial Growth Inhibition of 5 Fungi Pathogenic to Strawberries by Ultraviolet-C (UV-C) Irradiation (자외선(UV-C) 조사에 의한 딸기병원균의 균사생장억제)

  • Kim, Seon Ae;Ahn, Soon-Young;Oh, Wook;Yun, Hae Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.634-637
    • /
    • 2012
  • In strawberry production, among others, the high incidence of diseases by pathogenic fungi resulting in the reduction of fruit yield and quality requires the development of eco-friendly management systems rather than chemical sprays to control them. The diameter of colonies grown in media at $25^{\circ}C$ for 5 days was measured to evaluate the in vitro inhibition of mycelial growth of 5 pathogenic fungi by irradiation with ultraviolet (UV-C, 264 nm). The mycelial growth of 5 pathogenic fungi was inhibited in potato dextrose agar (PDA) by the irradiation of UV-C for 1 hour a day, and was dramatically inhibited by the irradiation of UV-C for 9-12 h a day. The irradiation of UV-C for 9-12 h a day inhibited completely the growth of the late blight pathogen, Phytophthora cactorum. The irradiation distance of 40 to 50 cm was effective for the inhibition of mycelial growth of fungi. The mycelial growth of fungi without pre-incubation was inhibited strongly by UV-C irradiation compared to fungi pre-incubated for 2 days without light. The mycelia growth of Colletotrichum gloeosprioides and Fusarium oxysporum was inhibited strongly by UV-C irradiation in vegetable 8 juice agar compared to PDA.

A Study for Development the Air Cleaner Using Air Ionizing Phenomena and Optical Catalizer (공기전리 현상과 광촉매를 이용한 공기정화 장치 개발에 관한 연구)

  • Shim, Chung-Han;Lee, Won-Dae;Lee, Dong-Hoon;Jung, Yong-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.28-33
    • /
    • 2006
  • The rapidly advanced industrial society takes advantage of high-technology, but it also suffered from the side effects such as various diseases by contamination. Of these problems, air pollution is considered as the most important problem nowadays. Air contamination is not only limited outdoors, but it also causes more serious effect in our indoor air environment. Depending on the notion that indoor air effects physical health seriously, the needs of the air cleaner is more earnest. Therefore, the main purpose of this study is to develop the air cleaner to meet the standard and get rid of poisonous and harmful material from the atmosphere by using a Corona Discharge. According to the purpose of this study, We set the negative ion generator, the UV, $TiO_{2}$ optical catalyzer, the electrical dust collector and the air filter in series order. It emits a lot of negative ions. We use these ions to purify harmful factors and contaminated materials. We collect the dust using static power that comes from the discharge of corona. At the same time, we try to develop the air cleaner to keep the air quality to meet the standard and kill the various viruses using UV LED and $TiO_{2}$ optical catalyzer. In this study, we use the UV LED that is smaller and efficient than a existing UV lamp. What is more, the UV LED has a features that a stabilizer occupying much space is not needed any more.

The contactless elevator button using the electrostatic capacity (정전 용량을 이용한 비접촉식 엘리베이터 버튼)

  • Bang, Gul-Won
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.67-72
    • /
    • 2021
  • The elevator installed in the building consists of an elevator call button and an input button for selection to the target floor. The elevator button is input only when the elevator user directly presses it. Such passenger input can be infected with an infectious disease due to contamination of the button. A non-contact button is required as a means for solving this problem, which detects the proximity of an object by applying a capacitive method. It implements a function of measuring the body's body temperature by attaching an infrared heat sensor, and provides a sterilization function of a button by attaching a UV-LED. A button was selected, a body temperature was measured through an infrared temperature measurement sensor, and UV-LED was turned on and sterilized when there was no user. The contactless elevator button is expected to be effective in preventing infectious diseases as it can prevent infection of viruses carrying infectious diseases and can detect body temperature to select positive patients of CIVID 19.

Light Emitting Diodes Based on Polyaniline (폴리아닐린을 이용한 발광소자 연구)

  • Kim, Eun Ok;Park, Soo Beom;Heo, Seok;Lee, Sung Joo
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.156-161
    • /
    • 2001
  • Various oxidation states of Polyaniline(PANI) were chemically synthesized, and characterized by FT-IR, UV-Vis, GPC, TG-DTA, Single layer light emitting diodes(LED) were perpared by spin coating of LEB-PANI solutions which have various oxidation states onto an ITO substrate and subsequent vacuum deposition of aluminum top electrode and then current-voltage characteristics. EL spectrum was investigated It was found that ${\pi}$-${\pi}$* transition were shifled to longer wavelength and molecular excition transition were decreased in the UV-Vis spectra and the intensity of EL and PL were increased as the contents of fully reduced form LEB increased. The turn-on voltage of ITO/LEB/AI structured LED was 5 V. It was found that the white light was emitted only from the phase with reduced epeat unit.

  • PDF

Formation of porous 3C-SiC thin film by anodization with UV-LED (양극산화법과 UV-LED를 이용한 다공성 3C-SiC 박막 형성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.307-310
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS(Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 $\sim$ 90 nm was achieved at 7.1 mA/cm$^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 cm$^{-1}$. PL shows the band gap enegry of thin film(2.5 eV) and porous 3C-SiC(2.7 eV).

Development of Surface-mount-type Crown-shaped Lens for Reducing Glare Effect of Light-emitting Diode Light Source (LED 광원의 눈부심 현상을 감소시키기 위한 표면 실장형 CR 렌즈 개발)

  • Park, Yong Min;Bang, Hyun Chul;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This paper introduces the use of a crown-shaped (CR) lens to effectively diffuse the light from a light-emitting diode (LED) without any loss in the light intensity, in contrast to polymer-bulb-type diffusers. The diffusion lens was designed based on the Snell's law, which describes the physical path of a ray passing through the boundary between different media. CR lenses were fabricated by polydimethylsiloxane (PDMS) casting and UV-embossing processes, which used a pre-designed metal mold and UV-curable resin, respectively. Through experiments and optical evaluations, it was verified that the newly proposed CR lens not only decreased the vertical light strength and glare effect from an LED light source but also improved the diffusion characteristics while maintaining the quality of the LED's light intensity.