• Title/Summary/Keyword: UV-Visible

Search Result 1,264, Processing Time 0.036 seconds

Determination of the Dissociation Constant of Thymol Blue with Diode-Laser/Fiber-Optic Thermal Lensing Spectroscopy

  • 김성호;노영순
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.822-824
    • /
    • 1998
  • The simple and convenient measurement of the dissociation constant of an indicator, thymol blue, was achieved by using a portable diode-laser/fiber-optic thermal lensing spectroscopy, which consisted of a visible diode laser, a photodiode, and an optical fiber. It gives comparable results to the cited value obtained from a conventional UV/VIS spectroscopy.

Surface Modification of Cellulose Acetate using $UV/O_3$ Irradiation

  • Lee, Hae-Sung;Jeong, Yong-Kyun;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.35-41
    • /
    • 2006
  • Upon $UV/O_3$ irradiation cellulose acetate (CA) films showed modified surface properties such as increased hydrophilicity and surface roughness as well as increased dyeability to cationic dyes. UV treatment induced photoscission of acetyl groups in the main chain of CA resulting in decreased degree of substitution from 2.2 to 1.3. The slight decreases in reflectance and transmittance were caused by remarkably increased nano-scale surface roughness of the CA surface as much as 20-fold, which can destructively interfere with visible lights of wavelength lower thu 500nm. Water contact angle decreased from $54^{\circ}\;to\;14^{\circ}$ with increasing UV energy. Surface energy also increased slightly. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of CA film. The increased dyeability to cationic dyes in terms of both K/S and %E may be due to photochemically introduced anionic and dipolar dyeing sites on the film surfaces.

A Facile Method for Micropatterning of Gold Nanoparticles Immobilized on UV Cross-linked Polymer Thin Films

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • This report demonstrates the immobilization of uniformly sized gold nanoparticles (AuNPs) on UV cross-linked poly(4-vinylpyridine) (P4VP) polymer thin films and the preparation of micropatterned structures of AuNPs on these films. The polymer thin films were prepared by a spin-coating of P4VP onto a cleaned silicon wafer surface. Upon UV irradiation, these films were then photo cross-linked. Gold nanoparticles were immobilized by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. The morphology of the films and the immobilization of AuNPs were studied by atomic force microscopy (AFM) and UV-visible spectroscopic techniques. The micropatterned gold structures that were produced on the polymer surface are delineated by combining with the photolithographic method. While untreated and simply spin coated films were physisorbed and unstable that could be easily removed by rinsing with a solvent, the cross-linked and AuNPs immobilized P4VP films were found to be highly stable even after repeated solvent extractions.

SnO2-Embedded Transparent UV Photodetector (SnO2 기반의 투명 UV 광 검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.806-811
    • /
    • 2017
  • An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Interaction Studies of a Novel, Water-Soluble and Anti-Cancer Palladim(II) Complex with Calf Thymus DNA

  • Mansouri-Torshizi, H.;Saeidifar, M.;Divsalar, A.;Saboury, A.A.;Shahraki, S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.435-441
    • /
    • 2010
  • We report the preparation and characterization of a new and water soluble complex of palladium(II) with 1,10- phenanthroline and butyldithiocarbamate ligands. This compound has been studied through spectroscopic techniques, $^1H$ NMR, IR, electronic spectra and elemental analysis and conductivity measurements. The complex shows 50% cytotoxic concentration ($Ic_{50}$) value against chronic myelogenous leukemia cell line, K562, much lower than that of cisplatin. Thus the mode of binding of this complex to calf thymus DNA have been extensively investigated by isothermal titration UV-visible spectrophotometry, fluorescence, gel filteration and other methods. UV-visible studies show that the complex exhibits cooperative binding with DNA and remarkably denatures the DNA at extremely low concentration ($~13\;{\mu}M$). Fluorescence studies indicate that the complex intercalate into DNA. Gel filtration studies suggest that the binding of Pd(II) complex with DNA is strong enough that it does not readily break. In these interaction studies, several thermodynamic and binding parameters are also determined which may reflect the mechanism of action of this type of compound with DNA.

Photocatalytic Degradation of Rhodamine B Using Carbon-Doped Carbon Nitride under Visible Light

  • Wang, Zhong-Li;Zhang, Zai-Teng;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2020
  • In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2 h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.

Interfacial Energetics of All Oxide Transparent Photodiodes

  • Yadav, Pankaj;Kim, Hong-sik;Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.1-390.1
    • /
    • 2016
  • The present work explains the interfacial energetics of all oxide transparent photodiodes. The optical, structural and morphological of copper oxides were systematically analyse by UV-Visible spectrometer, X-Ray diffraction, Raman spectroscopy, Scanning electron microscopy (SEM) and Atomic force microscopy measurements (AFM). The UV-Visible result exhibits optical bandgap of Cu2O and CuO as 2.2 and 2.05 eV respectively. SEM and AFM result shows a uniform grain size distribution in Cu2O and CuO thin films with the average grain size of 45 and 40 nm respectively. The results of Current-Voltage and Kelvin probe force microscope characteristics describe the electrical responses of the Cu2O/ZnO and CuO/ZnO heterojunctions photodiodes. The obtained electrical response depicts the approximately same knee voltages with a measurable difference in the absolute value of net terminal current. More over the present study realizes the all oxide transparent photodiode with zero bias photocurrent. The presented results lay the template for fabricating and analysing the self-bias all oxide transparent photodetector.

  • PDF