Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.6.279

Photocatalytic Degradation of Rhodamine B Using Carbon-Doped Carbon Nitride under Visible Light  

Wang, Zhong-Li (Department of Construction Engineering, Anhui Vocational and Technical College)
Zhang, Zai-Teng (Department of Construction Engineering, Anhui Vocational and Technical College)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.30, no.6, 2020 , pp. 279-284 More about this Journal
Abstract
In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2 h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.
Keywords
$g-C_3N_4$; carbon doped; photocatalytic degradation; rhodamine B.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. J. Zhang, F. Z. Xie, J. Liu, W. Zhao and K. Zhang, Ultrason. Sonochem., 20, 209 (2013)   DOI
2 R. Hao, G. Wang, H. Tang, L. Sun, C. Xu and D. Han, Appl. Catal. B Environ., 187, 47 (2016).   DOI
3 L. Zhang, X. Chen, J. Guan, Y. Jiang, T. Hou and X. Mu, Mater. Res. Bull., 48, 3485 (2013).   DOI
4 Z. Tong, D. Yang, T. Xiao, Y. Tian and Z. Jiang, Chem. Eng. J., 260, 117 (2015).   DOI
5 K. R. Reddy, K. V. Karthik, S. B. Prasad, S. K. Soni, H. M. Jeong and A. V. Raghu, Polyhedron, 120, 169 (2016).   DOI
6 D. Lu, H. Wang, X. Zhao, K. K. Kondamareddy, J. Ding, C. Li and P. Fang, ACS Sustainable Chem. Eng., 5, 1436 (2017).   DOI
7 B. Chai, J. Yan, C. Wang, Z. Ren and Y. Zhu, Appl. Surf. Sci., 391, 376 (2017).   DOI
8 J. Jin, Q. Liang, C. Ding, Z. Li and S. Xu, J. Alloys Compd., 691, 763 (2017).   DOI
9 F. J. Zhang, K. H. Zhang, F. Z. Xie, J. Liu, H. F. Dong, W. Zhao and Z. D. Meng, Appl. Surf. Sci., 265, 578 (2013).   DOI
10 A. M. Alansi, M. Al-Qunaibit, I. O. Alade, T. F. Qahtan and T. A. Saleh, J. Mol. Liq., 253, 297 (2018).   DOI
11 F. Guo, M. Li, H. Ren, X. Huang, K. Shu, W. Shi and C. Lu, Sep. Purif. Technol., 228, 115770 (2019).   DOI
12 C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin and X. Yang, Appl. Catal. B Environ., 256, 117867 (2019).   DOI
13 X. Lin, C. Liu, J. Wang, S. Yang, J. Shi and Y. Hong, Sep. Purif. Technol., 226, 117 (2019).   DOI
14 Y. Cheng, L. He, G. Xia, C. Ren and Z. Wang, New J. Chem., 43, 14841 (2019).   DOI
15 M. Wang, G. Tan, D. Zhang, B. Li, L. Lv, Y. Wang, H. Ren, X. Zhang, A. Xia and Y. Liu, Appl. Catal. B Environ., 254, 98 (2019).   DOI
16 L. Wang, G. Zhou, Y. Tian, L. Yan, M. Deng, B. Yang, Z. Kang and H. Sun, Appl. Catal. B Environ., 244, 262 (2019).   DOI
17 F. J. Zhang, F. Z. Xie, S. F. Zhu, J. Liu, J. Zhang, S. F. Mei and W. Zhao, Chem. Eng. J., 228, 435 (2013).   DOI
18 C. Hu, W. Z. Hung, M. S. Wang and P. J. Lu, Carbon, 127, 374 (2018).   DOI
19 M. Ai, J. W. Zhang, R. Gao, L. Pan, X. Zhang and J. J. Zou, Appl. Catal. B Environ., 256, 117805 (2019).   DOI
20 S. S. Shinde, A. Sami and J. H. Lee, Carbon, 96, 929 (2016).   DOI
21 P. Xia, B. Zhu, B. Cheng, J. Yu and J. Xu, ACS Sustainable Chem. Eng., 6, 965 (2018).   DOI