• Title/Summary/Keyword: UV-Cure

Search Result 51, Processing Time 0.024 seconds

Changes in the Optical and Thermal Properties of Low-Temperature Cured Polyimide Thin Films Using the Catalyst (촉매를 이용한 저온경화 폴리이미드 박막의 광학적/열적 특성 변화)

  • Park, Myeong-Soon;Kim, Kwang-In;Nam, Ki-Ho;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • In this study, various polyimide films were synthesized via low temperature cure in order to understand changes in their physical properties when using 4,4'-oxydianiline (ODA) as a diamine and dianhydride molecules with different backbones on a single diamine such as 4,4'-Oxydiphthalic anhydride (ODPA), 4,4-hexafluoroisopropylidene diphthalic dianhydride (6FDA), and 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA). After the synthesis of poly(amic acid), polyimide films were fabricated by adding 1,4-diazabicyclo [2.2.2]octane (DABCO), a low-temperature catalyst, at various wt% to poly(amic acid)s. Changes of optical and thermal properties were compared and analyzed between polyimide films without catalyst and polyimide films with catalyst by FT-IR, UV-Vis transmittance, DSC/TGA, and WAXD analysis. Wide-angle X-ray diffraction (WAXD) analysis revealed that the mean intermolecular distance decreased with the use of a catalyst by the type of dianhydride. Thus, while the optical properties of the films improve by a low-temperature cure performed using a catalyst, their thermal properties decrease. These changes can be explained by the changes in the morphological structure of the films triggered by a catalyst-induced reduction in the mean intermolecular distance. Moreover, the results show that the type of dianhydride determines the degree of change in the optical and thermal properties in each types of polyimide, demonstrating that changes in the optical and thermal properties are directly associated with the backbone of the polyimide structure.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres (마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성)

  • Kim, Nam Yi;Chang, Young-Wook;Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.621-626
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hollow micro-spheres with high heat transfer resistance. The UV curable resin system consisting of hexa aliphatic urethane acrylate (UP118), trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and photoinitiator (Irgacure184) was employed as an organic binder. The glass substrates were coated by the prepared composites via bar coating method and cured under UV radiation. The optical transparency, thermal insulation property, adhesion, and surface hardness of the glass coated with composites containing different type of micro-spheres were investigated. The incorporation of micro-spheres with only 20 vol% of content resulted in remarkable improvement in the thermal insulation property of the coated glass. In addition, the transparent coated glass with light transmittance of about 80% could be obtained when silica micro-sphere (SP) was used as a thermal barrier.

Curing and Coating Properties of Photo-Curable Self-Photoinitiating Acrylate (광경화형 자가광개시 아크릴레이트의 경화특성 및 도막물성)

  • Han, A-Ram;Hong, Jin-Who;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Self-photoinitiating acrylate (SPIA) which can undergo self-initiation under UV irradiation was synthesized by a Michael addition in the presence of a base catalyst. The SPIA polymerizations were investigated by photo-differential scanning calorimeter (photo-DSC) and surface physical properties such as pendulum hardness and pencil hardness. The results showed that the SPIA can cure upon UV irradiation by itself without a photoinitiator. But we found out that both the curing rate and the conversion were too low for the self-curing reaction of SPIA. In order to improve the SPIA curing properties, we introduced the SPIA/cationic hybrid system and observed the effects of the addition of commercial free radical type monomer and photoinitiator on the curing behaviors. SPIA/cationic hybrid system was the best suitable to improve the SPIA curing properties. The kinetic analysis indicated that the cationic monomer and photoinitiator apparently accelerated the cure reaction and rate of the hybrid SPIA system, mostly due to the synergistic effect of cationic monomer and photoinitiator increasing the mobility of active species and the generation of reactive species (free radical, cation) during the photopolymerization process. The physical properties showed that, unlike typical free radical system, the hybrid systems did not show oxygen inhibition effect because of cationic reaction on the coating surface.

Synthesis and Photosensitive Properties of Poly[N-(formyloxyphenyl)maleimide] Containing Photosensitive Groups (Poly[N-(formyloxyphenyl)maleimide] 고분자의 합성과 자외선에 대한 반응특성)

  • Kim, Sang-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • Synthesis of poly[N-(formyloxyphenyl)maleimide](PFOMI) as photopolymer were investigated with various kinds of photosensitive groups. Generally, photopolyimide have some deficiencies in solubility, sensitivity, reserve stability of the photosensitive solution, and the precision of image pattern. The study has been required on those polymers which have high glass transition temperature and photo efficiency, and low dielectricity. The existing condensation resins require high curing temperature and perfect elimination of subreacted materials that are produced during the process after irradiation and various membrane damages such as the deformation and contraction in image pattern cure. In this study poly[N-(hydroxyphenyl)maleimide](PHPMI) was synthesized. The PHPMI were analyzed by H-NMR and FT-IR. The measured number average molecular weight of PHPMI was produced was $1.06{\times}10^4$. Poly[N-(formyloxyphenyl)maleimide](PFOMI) as a type of photo-Fries rearrangement was synthesized by NHPMI and formic acid followed by radical polymerization. PFOMI was analyzed by FT-IR, and photocharacteristics was investgated by UV spectra and FT-IR before and after UV irradiation. Based on the image characteristics of PFOMI measured from optical micrographs, it was formed that the resolution of positive type PFOMI was $0.5{\mu}m$.

  • PDF

A Study on the Manufacture and Application of UV-Cured Multi-Functional(Anti-Stain/Virus) Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 복합기능(내오염/항균)성 코팅액의 제조 및 응용에 관한 연구)

  • Yoon, Hyun-Jung;Park, Bo-Ram;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3615-3620
    • /
    • 2010
  • This study is development of UV-cured coating compounds which has more improved anti-stain and anti-biosis, about surface prevention of PVC Tile. We added water-soluble anti-static and anti-microbial agent to the resin. The process has prevented electrostatic and bacterial contagious disease. The result, which added 15wt% of water-soluble anti-static and 1wt% anti-microbial agent and coated with No.12 Bar-coater, coating composition had optimum surface property. It appear electric resistance($10^9{\Omega}/cm^2$), anti-stain (Ink Test, Dust Test), anti-biosis (99.99%), and adhesive power(100%).

Synthesis and Cured Film Properties of UV-Curable Caprolactone-Modified Urethane Acrylate Oligomers (광경화용 카프로락톤 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구)

  • Kim, Jeong-Yeol;Moon, Byoung-Joon;Kang, Doo-Whan;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.574-578
    • /
    • 2010
  • In this study, the caprolactone modified hydroxy acrylates (CHAs) were synthesized by ring-opening reaction of caprolactone and 2-hydroxyethyl acrylate (2-HEA) as initiator. Also, the caprolactone modified urethane acrylate (UA) oligomers were synthesized by condensation reaction of previously synthesized CHAs, 2-hydroxyethyl acrylate (2-HEA) and hexamethylene diisocyanate trimer (HDT). Using the hydroxy number of CHAs, the molecular weights of the CHAs were calculated easily and their molecular weight was similar to the theoretical molecular weight of them. The viscosity of UA oligomers decreased as increasing a content of CHA in the UA oligomer. Cure films were prepared from UA oligomer, reactive diluents, and UV initiator to investigate their physical properties. The thermal stability and color difference on high temperature for the cured film were improved as increasing the crosslinking density. Their surface hardness was also increased as increasing crosslinking density of the cured films, but their elongation at break was decreased.

Manufacture and Application of UV-Cured Anti-cigar burning Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 내열 코팅액의 제조 및 응용에 관한 연구)

  • Park, Bo-Ram;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.608-613
    • /
    • 2010
  • This study is on development of UV-cured water soluble coating composition which have more improved anti-cigar burning to prevent a surface of PVC tile from damage of heat. To make an anti-cigar burning coating solution, thermostable agent that synthesize main materials phosphorus compound, guanidine and ammonium phosphate dibasic used temporary flame retardants, changing their contents from 10 to 30wt% against quantities of resin and compounded. After coating PVC tiles using bar-coating method that can adjust a thickness, we estimated surface properties of coated layer such as anti-cigar burning, adhesive power, chemical resistance, thickness of coating, and so on. Results showed that a coating composition added 30 wt% of phosphorus compound and coated with No.12 bar-coater had the best optimized surface property in anti-cigar burning effect, adhesive power and chemical resistance. Also, we could find anti-cigar burning effect was improved as thermostable agents content and coating thickness increased.

Study on the Curing Properties of Photo-curable Acrylate Resins (광경화성 아크릴 수지의 경화특성에 관한 연구)

  • Kim, Sung-Hyun;Chang, Hyun-Suk;Park, Sun-Hee;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.469-473
    • /
    • 2010
  • The curing mechanism and characteristics of UV curable acrylate resins were studied using Photo-DSC, FTIR, and Raman spectroscopy. Effects of chemical structures of acrylate, numbers of functional group, and UV intensity on curing kinetics were investigated with Photo-DSC. FTIR and Raman spectroscopy has been used to understand curing mechanisms and reaction conversion. In order to investigate the effect of oxygen on the photo-curing reaction, the curing process was compared between the acrylate and thiol-ene resins. The reaction conversion was found to be less than 80% for acrylate resins. The photo-curing reaction of the acrylate resin could not proceed to the end because of oxygen which acts as a reaction inhibitor while the thiol-ene resin was hardly affected from oxygen during the curing process.

The Effect of Chemical Properties of Comonomer on Adhesion Properties of Acrylic Pressure Sensitive Adhesives (공단량체의 화학적 구조에 따른 아크릴 접착제의 접착특성)

  • Choi, Woon-Jin;Kim, Ho-Gyum;Cho, Kwang-Soo;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.369-373
    • /
    • 2007
  • In this study, solvent-free pressure sensitive adhesives (PSA) using acrylic copolymer was prepared by UV radiation to investigate the effect of comonomer on the adhesion properties. Adhesive force value of PSA was increased with the amount of comonomer having shorter side chain due to the enhanced intrinsic surface energy. Peel and shear strength were also influenced by chemical properties of comonomer. The addition of comonomer, ethyl and n-butyl acrylate allows PSA sample with high peel and shear strength. This nay be explained in terms of correlation between loss modulus and glass transition temperature of PSA. As the addition of acrylic comonomers with long side chain length decreases the loss modulus of PSA, the deformation of PSA can not be inhibited.