Synthesis and Cured Film Properties of UV-Curable Caprolactone-Modified Urethane Acrylate Oligomers

광경화용 카프로락톤 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구

  • Kim, Jeong-Yeol (Energy Systems Technology Center, Korea Institute of Industrial Technology) ;
  • Moon, Byoung-Joon (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University) ;
  • Kang, Doo-Whan (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University) ;
  • Hwang, Seok-Ho (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University)
  • 김정열 (한국생산기술연구원) ;
  • 문병준 (단국대학교 고분자시스템공학과, 광에너지소재연구센터) ;
  • 강두환 (단국대학교 고분자시스템공학과, 광에너지소재연구센터) ;
  • 황석호 (단국대학교 고분자시스템공학과, 광에너지소재연구센터)
  • Received : 2010.07.12
  • Accepted : 2010.08.12
  • Published : 2010.11.25

Abstract

In this study, the caprolactone modified hydroxy acrylates (CHAs) were synthesized by ring-opening reaction of caprolactone and 2-hydroxyethyl acrylate (2-HEA) as initiator. Also, the caprolactone modified urethane acrylate (UA) oligomers were synthesized by condensation reaction of previously synthesized CHAs, 2-hydroxyethyl acrylate (2-HEA) and hexamethylene diisocyanate trimer (HDT). Using the hydroxy number of CHAs, the molecular weights of the CHAs were calculated easily and their molecular weight was similar to the theoretical molecular weight of them. The viscosity of UA oligomers decreased as increasing a content of CHA in the UA oligomer. Cure films were prepared from UA oligomer, reactive diluents, and UV initiator to investigate their physical properties. The thermal stability and color difference on high temperature for the cured film were improved as increasing the crosslinking density. Their surface hardness was also increased as increasing crosslinking density of the cured films, but their elongation at break was decreased.

본 연구에서는 고리화합물인 카프로락톤으로부터 2-hydroxyethyl acylate(2-HEA)를 개시제로 사용하여 caprolactone modified hydroxy acrylate(CHA)를 합성한 후, hexamethylene diisocyanate trimer(HDT)와 축중합을 통해 카프로락톤 변성 우레탄 아크릴레이트(UA) 올리고머를 합성하였다. 카프로락톤과 2-HEA의 몰비에 따른 CHA의 분자량은 수산가를 이용하여 계산되었으며, 계산된 분자량은 이론분자량과 거의 일치하였다. UA 올리고머의 점도는 2-HEA 대한 CHA의 함량이 증가할수록 감소하는 경향을 보였다. UA 올리고머와 반응형 희석제를 광개시제와 함께 광경화한 후, 형성된 경화필름의 내열성 및 내열 변색성을 측정하였다. 경화필름의 가교밀도가 증가할수록 내열성 및 내열변색성이 우수하였으나 가교밀도가 증가할수록 경도는 증가하지만, 신율은 상대적으로 감소하였다.

Keywords

References

  1. S. P. Pappas, UV Curing, Science and Technology, Technology Marketing Corp., Norwalk, 1985.
  2. R. Holman, UV and EB Curing Formulation for Printing Inks, Coating and Paints, SITA Technology, London, 1984.
  3. S. B. Lin, S. Y. Tsay, T. A. Spechhard, K. K. S. Hwang, J. J. Jezerc, and S. L. Cooper, Chem. Eng. Commun., 30, 251 (1984). https://doi.org/10.1080/00986448408911131
  4. T. A. Spechhard, K. K. S. Hwang, S. B. Lin, S. Y. Tsay, M. Koshiba, Y. S. Ding, and S. L. Cooper, J. Appl. Polym. Sci., 30, 647 (1985). https://doi.org/10.1002/app.1985.070300215
  5. M. A. Ali, M. A. Khan, and K. M. I. Ali, J. Appl. Polym. Sci., 60, 879 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960509)60:6<879::AID-APP11>3.0.CO;2-S
  6. J. W. Yoo and D. S. Kim, Polymer(Korea), 23, 376 (1999).
  7. Y. Otsubo, T. Amari, and K. Watanabe, J. Appl. Polym. Sci., 29, 4071 (1984). https://doi.org/10.1002/app.1984.070291239
  8. T. Matynia, R. Kutyla, K. Bukat, and B. Pienkowska, J. Appl. Polym. Sci., 55, 1583 (1995). https://doi.org/10.1002/app.1995.070551109
  9. M. Bajpai, V. Schkla, and A. Kumar, Prog. Org. Coat., 44, 271 (2002). https://doi.org/10.1016/S0300-9440(02)00059-0
  10. W. Shi and B. Ranby, J. Appl. Polym. Sci., 51, 1129 (1994). https://doi.org/10.1002/app.1994.070510619
  11. T. R. Williams, J. Appl. Polym. Sci., 31, 1293 (1986). https://doi.org/10.1002/app.1986.070310515
  12. R. Bongiovanni, G. Malucelli, M. Sangermano, and A. Prioda, Prog. Org. Coat., 36, 70 (1999). https://doi.org/10.1016/S0300-9440(99)00033-8
  13. S. J. Kubisen and G. S. Peacock, Polym. Paint Colour J., 176, 619 (1986).
  14. R. A. Etzell, B. J. Miller, and D. J. Dziekan, U.S. Patent 4,720,528 (1988).
  15. W. Aldinger, H. Anzt, and G. Morlock, U.S. Patent 4,368,320 (1983).
  16. S. Watanabe and K. Okitsu, U.S. Patent 4,916,254 (1990).
  17. S. Nakano, Prog. Org. Coat., 35, 141 (1999). https://doi.org/10.1016/S0300-9440(98)00082-4
  18. Y. O. Bae, C. S. Ha, and W. J. Cho, Eur. Polym. J., 27, 2121 (1991).
  19. F. Schofield, D. B. Judd, and R. S. Hunter, ASTM Bull., 19 (1941).
  20. R. S. Hunter, J. Opt. Soc. Amer., 38, 1094 (1948).
  21. D. J. Park and W. J. Cho, Polymer(Korea), 14, 1 (1990).
  22. J. F. Rabek, Photostabilization of Polymers: Principles and Applications, Elsevier, London, 1990.
  23. K. D. Ahn, J. Korean Ind. Eng. Chem., 3, 395 (1992).