• Title/Summary/Keyword: UV-CURABLE

Search Result 275, Processing Time 0.021 seconds

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF

Development of UV-curable paste for micro mold transfer process of barrier ribs of PDPs

  • Kim, Yoo-Seong;Koh, Tae-geum;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.917-920
    • /
    • 2006
  • In an attempt to reduce processing cost and to improve resolution of PDPs, micro mold transfer processing route for barrier ribs of plasma display panel was developed. In this study, the parameters that may cause defects during the process were identified, which include the shrinkage during UV curing process, stress due to evaporation of organic components, and sintering shrinkage. Considering such parameters, UV curable paste was developed and barrier ribs of PDPs were successfully processed via the process. In addition, the process was successfully applied for the processing of barrier ribs with embedded counter electrodes.

  • PDF

Relationship between Structure and Properties of UV-Curable Polyurethane Acrylate Ionomers

  • 김태우;김한도
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.468-472
    • /
    • 1996
  • A series of UV-curable polyurethane acrylate ionomer were synthesized from isophorone diisocyanate(IPDI), poly(tetramethylene ether glycol)(PTMG), 2,2-bis(hydroxymethyl)propionic acid (CMPA), triethylamine(TEA), 2-hydroxy ethyl acrylate (HEA), and dibutyl tin dilaurate (DBT) as a catalyst. 2,2-dimethoxy-2-phenyl acetophenone(DMPAP) was used as a photoinitiator. The films of UV-cured polyurethane acylate ionomer were prepared by casting the formulated materials onto a glass plate at room temperature and cured using a medium pressure mercury lamp (80 W/cm, max = 365nm). Effects of DMPA content, molecular weight of PTMG and degree of neutralization on the properties were invesigated. It is found that the storage modulus increased with increasing DMPA content. The glass transition temperature of sample A shifted to higher temperature as the content of DMPA was increased. Tensile modulus also increased with increasing DMPA content. Modulus and Tg decreased with increasing molecular weight of PTMG form 650 to 2000. With increasing the degree of nutralizaion, ionomers exhibited improved modulu.

  • PDF

Pressure Sensitive Adhesion Performances of SIS/SBS based UV-curable Pressure Sensitive Adhesives using Thiol-ene Reaction (Thiol-ene 반응을 이용한 UV경화형 SIS/SBS계 점착제의 점착물성)

  • Lim, Dong-Hyuk;Do, Hyun-Sung;Kim, Hyun-Joong;Yoon, Goan-Hee;Bang, Jung-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Synthetic rubber based pressure-sensitive adhesives (PSAs) usually containing SIS or SBS block copolymer, tackifier, plasticizer, and other additives are now widely used on various applications. As these PSAs are physically crosslinked and can be applied without the use of solvent, they are thermally processable and environmentally friendly. However these PSAs cannot be used in high temperature applications and in applications where solvent and chemical resistance properties are required. We developed the PSA adding UV curable system, such as thiol-ene system, to increase adhesion properties at elevated temperature. The adhesion properties such as probe tack, peel strength, shear adhesion failure temperature (SAFT) were evaluated. The probe tack test was conducted with varying probe materials and coating thickness of PSAs. Using the contact angle, the surface property of the cured PSAs was also observed.

  • PDF

Preparation of UV Curable Anti-Glare Coating Films Using Micrometer-Sized Silica Particles (마이크로미터 크기의 실리카 입자를 이용한 UV 경화형 눈부심 방지 코팅 필름 제조)

  • Kim, Tae Hyoung;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.165-173
    • /
    • 2021
  • Anti-glare (AG) coating films are applied to various display fields such as liquid crystal displays, LED lighting, and touch panels. In this study, micrometer-sized silica particles were added as fillers in the UV-curable coating solutions to provide anti-glare effect. During this process, the effects of the particle size, content, stirring time, and mixing ratio of silica particles of different sizes were investigated on the haze values and visible light transmittance of the coating films. As a result, as the size of the silica particles increased and the content of the silica particles increased, the haze values increased, but the visible light transmittance decreased. On the other hand, the stirring time did not significantly affect the haze value and transmittance of coating films. In addition, as the mixing ratio of large-sized silica particles increased, the haze value increased, but on the contrary, the visible light transmittance decreased.

Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process (자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성)

  • Lee, Sunhee;Park, Soyeon;Jung, Imjoo;Lee, Jungsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

Adhesion Performance of UV-curable Debonding Acrylic PSAs with Different Thickness in Thin Si-wafer Manufacture Process (박막 실리콘 웨이퍼용 UV 경화형 Debonding 아크릴 점착제의 두께별 접착 물성)

  • Lee, Seung-Woo;Park, Ji-Won;Lee, Suk-Ho;Lee, Yong-Ju;Bae, Kyung-Rul;Kim, Hyun-Joong;Kim, Kyoung-Mahn;Kim, Hyung-Il;Ryu, Jong-Min
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.120-125
    • /
    • 2010
  • UV-curable acrylic Pressure-sensitive adhesives (Acrylic PSAs) are used in many different parts in the world. A wafer manufacture process which is based on semiconductor industry is one thing. We have used acrylic PSAs whose thickness is different from $20{\mu}m$ to $30{\mu}m$ in wafer manufacture process so far. But as wafers become more thinner, acrylic PSAs are supposed to satisfy the requirements such as proper adhesion performance. The main purpose of this research is studying proper adhesion performance and UV-curing behavior of UV-curable acrylic PSAs with very thin thickness and then determining optimized conditions to raise the efficiency of thin wafer production. Acrylic PSAs contain 2-Ethylhexyl Acrylate (2-EHA), Acrylic Acid (AA) and Butyl Acrylate (BA). Ethyl acetate (EtAc) is used as solvent. The acrylic PSAs are obtained using solvent polymerization. Thickness of UV-curable acrylic PSAs is different from $10{\sim}30{\mu}m$. By peel strength and probe tack, adhesion performance and UV curing behavior of acrylic PSA are concerned.

Synthesis of Pressure-sensitive Acrylic Adhesives with Photoreactive Groups and Their Application to Semiconductor Dicing Tapes (광 반응성기를 갖는 아크릴 점착제의 합성과 반도체 다이싱 테이프로의 적용 연구)

  • Hee-Woong Park;Nam-Gyu Jang;Kiok Kwon;Seunghan Shin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.522-528
    • /
    • 2023
  • In this work, adhesive tapes were prepared for the dicing process in semiconductor manufacturing. Compounds with different numbers of photoreactive groups (f = 1 to 3) were synthesized and incorporated into acrylic copolymers to formulate UV-curable acrylic adhesives. Structural confirmation of the synthesized photoreactive compounds (f = 2 or 3) was performed using nuclear magnetic resonance (NMR) spectroscopy. The introduction of the photoreactive compounds into the acrylic adhesive was accomplished by urethane reactions, and the successful synthesis of the UV-curable acrylic adhesive was verified by Fourier transform infrared (FT-IR) measurements. To evaluate the performance of the adhesive, the peel strength was evaluated before and after UV irradiation using a silicon wafer as a substrate. The adhesive exhibited high peel strength (~2000 gf/25 mm) before UV exposure, which was significantly reduced (~5 gf/25 mm) after UV exposure. Interestingly, the adhesive containing multifunctional photoreactive compounds showed the most significant reduction in peel strength. In addition, surface residue measurements by field emission scanning electron microscopy (FE-SEM) showed minimal surface residue (~0.2%) after UV exposure. Overall, these results contribute to the understanding of the behavior of UV-curable acrylic adhesives and pave the way for potential applications in semiconductor manufacturing processes.

Fabrication of waveguide using UV Ar-ion laser direct writing (Laser Direct Writing 방법을 이용한 광도파로 제작)

  • Kang H. S.;Suh J.;Lee J. H.;Kim J. O.
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The laser direct writing method using a UV Argon-ion laser is studied for fabrication of waveguide. The laser direct writing system is constructed with a vision camera, a xy-stage, a motion controller and the delivery components of a laser beam. The UV Argon-ion laser has wavelength range of $333.6\~363.8$ nm. A photo-active UV curable polymer for a planar light-wave circuit(PLC) of single mode is used. This polymer is irradiated by Argon-ion laser and developed by a solvent after a post-baking. The optimum laser direct writing condition is obtained experimentally by changing various process parameters such as laser power, writing speed and focal length. The propagation and coupling loss of a optical waveguide was measured as 1dB/cm and 0.6dB/cm, respectively. Also, the minimum width of waveguide of $100{\mu}m$(ZPLW-207) is obtained. Finally, the waveguides of line, bend and branch type are successfully fabricated.

  • PDF

Development of Optical Illusion Design Pattern for Furniture Using a UV Curing Resin (UV 경화성 수지를 이용한 가구용 옵티컬 일루젼 디자인 패턴 개발)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • The design trend is changed with the times. The design trend of recent 21 century is eco-friendly design. The optical illusion design is a new trend of digital convergence era. In this study, optical illusion patterns were designed for furniture with eco-friendly UV-curable resin. The micro-patterns of optical illusion design were fabricated with the micro-mold which was mastered using a semiconductor micro-fabrication process by photolithography technique. The micro-patterns of optical illusion design were manufactured on PET film with a roll-to-roll process using a UV-curable resin. The manufactured PET film of optical illusion micro-pattern exhibits hologram effect, optical illusion effect, and texture of metal with the backside digital printing of metal tone. The furniture of new design concept so-called emotional furniture was manufactured with the various optical illusion design patterns. The optical illusion design patterns by UV mold prospect a new trend of interior design materials.