DOI QR코드

DOI QR Code

광 반응성기를 갖는 아크릴 점착제의 합성과 반도체 다이싱 테이프로의 적용 연구

Synthesis of Pressure-sensitive Acrylic Adhesives with Photoreactive Groups and Their Application to Semiconductor Dicing Tapes

  • 박희웅 (한국생산기술연구원 청정기술연구소 친환경융합소재연구부문) ;
  • 장남규 (한국생산기술연구원 청정기술연구소 친환경융합소재연구부문) ;
  • 권기옥 (한국생산기술연구원 청정기술연구소 친환경융합소재연구부문) ;
  • 신승한 (한국생산기술연구원 청정기술연구소 친환경융합소재연구부문)
  • Hee-Woong Park (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Nam-Gyu Jang (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technolog) ;
  • Kiok Kwon (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technolog) ;
  • Seunghan Shin (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technolog)
  • 투고 : 2023.07.27
  • 심사 : 2023.08.01
  • 발행 : 2023.10.10

초록

반도체 제조공정인 다이싱 공정용 점착 테이프를 제조하기 위해 다양한 개수의 광 반응기를 갖는 화합물을 합성하였고 아크릴 공중합체에 도입하여 UV 경화형 아크릴 점착제를 제조하였다. 합성된 광반응성 화합물(f = 2 또는 3)의 구조는 NMR을 이용하여 확인하였다. 광반응성 화합물(f = 1~3)은 우레탄 반응을 통해 아크릴 점착제의 곁가지로 도입되었고, FT-IR 측정을 통해 UV 경화형 아크릴 점착제가 성공적으로 합성되었음을 확인하였다. UV 조사 전 후의 박리강도 변화는 실리콘 웨이퍼를 기재로 하여 평가되었으며, UV 조사 전 점착제의 높은 박리강도(~2000 gf/25 mm)가 UV조사 후 크게 감소(~5 gf/25 mm)하였다. 다 관능성 광 반응기가 도입된 점착제의 점착력 감소 효과가 가장 컸으며 FE-SEM을 통한 표면 잔류물 측정 결과, UV 조사 후의 표면 잔류물도 매우 낮은 수준(~0.2%)으로 관찰되었다.

In this work, adhesive tapes were prepared for the dicing process in semiconductor manufacturing. Compounds with different numbers of photoreactive groups (f = 1 to 3) were synthesized and incorporated into acrylic copolymers to formulate UV-curable acrylic adhesives. Structural confirmation of the synthesized photoreactive compounds (f = 2 or 3) was performed using nuclear magnetic resonance (NMR) spectroscopy. The introduction of the photoreactive compounds into the acrylic adhesive was accomplished by urethane reactions, and the successful synthesis of the UV-curable acrylic adhesive was verified by Fourier transform infrared (FT-IR) measurements. To evaluate the performance of the adhesive, the peel strength was evaluated before and after UV irradiation using a silicon wafer as a substrate. The adhesive exhibited high peel strength (~2000 gf/25 mm) before UV exposure, which was significantly reduced (~5 gf/25 mm) after UV exposure. Interestingly, the adhesive containing multifunctional photoreactive compounds showed the most significant reduction in peel strength. In addition, surface residue measurements by field emission scanning electron microscopy (FE-SEM) showed minimal surface residue (~0.2%) after UV exposure. Overall, these results contribute to the understanding of the behavior of UV-curable acrylic adhesives and pave the way for potential applications in semiconductor manufacturing processes.

키워드

과제정보

이 연구는 한국생산기술연구원의 빅 이슈 프로그램 (프로젝트 번호 EO20113)의 지원 하에 진행되었습니다.

참고문헌

  1. H. Park, H. Seo, J. Lee, and S. Shin, Adhesion improvement of the acrylic pressure-sensitive adhesive to low-surface-energy substrates using silicone urethane dimethacrylates, Eur. Polym. J., 137, 109949 (2020). 
  2. Z. Czech and M. Wojciechowicz, The crosslinking reaction of acrylic PSA using chelate metal acetylacetonates, Eur. Polym. J., 42, 2153-2160 (2006).  https://doi.org/10.1016/j.eurpolymj.2006.03.022
  3. S. Baek, S. Jang, and S. Hwang, Sustainable isosorbide-based transparent pressure-sensitive adhesives for optically clear adhesive and their adhesion performance, Polym. Int., 66, 1834-1840 (2017).  https://doi.org/10.1002/pi.5450
  4. E. Mehravar, M. A. Gross, A. Agirre, B. Reck, J. R. Leiza, and J. M. Asua, Importance of film morphology on the performance of thermo-responsive waterborne pressure sensitive adhesives, Eur. Polym. J., 98, 63-71 (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.004
  5. M. Zhu, Z. Cao, H. Zhou, Y. Xie, G. Li, N. Wang, Y. Lie, L. He, and X. Qu, Preparation of environmentally friendly acrylic pressure-sensitive adhesives by bulk photopolymerization and their performance, RSC Adv., 10, 10277-10284 (2020).  https://doi.org/10.1039/C9RA10514J
  6. H. Park, S. Seo, K. Kwon, and S. Shin, Preparation of UV-curable PSAs by grafting isocyanate-terminated photoreactive monomers and the effect of the functionality of grafted monomers on the debonding properties on Si wafers, RSC Adv., 13, 11874-11882 (2023).  https://doi.org/10.1039/D3RA00398A
  7. S. Lee, J. Park, Y. Lee, H. Kim, M. Rafailovich, and J. Sokolov, Adhesion performance and UV-curing behaviors of interpenetrated structured pressure sensitive adhesives with 3-MPTS for Si-wafer dicing process, J. Adhes. Sci. Technol., 26, 1629-1643 (2012).  https://doi.org/10.1163/156856111X618452
  8. K. Ebe, H. Seno, and K. Horigome, UV curable pressure-sensitive adhesives for fabricating semiconductors. I. Development of easily peelable dicing tapes, J. Appl. Polym. Sci., 90, 436-441 (2003).  https://doi.org/10.1002/app.12673
  9. P. Hao, B. Sun, X. Chu, Y. Sun, X. Xing, S. Liu, E. Tang, and X. Xu, Effect of castor oil based urethane oligomer on properties of UV-curable pressure sensitive adhesive for peelable wafer dicing tape, J. Adhes. Sci. Technol., 34, 2499-2509 (2020).  https://doi.org/10.1080/01694243.2020.1771974
  10. C. Ryu, B. Pang, H. Kim, H. Kim, J. Park, S. Lee, and K. Kim, Wettability and adhesion characteristics of photo-crosslinkable adhesives for thin silicon wafer, Int. J. Adhes. Adhes., 40, 197-201 (2013).  https://doi.org/10.1016/j.ijadhadh.2012.08.005
  11. H. Joo, H. Do, Y. Park, and H. Kim, Adhesion performance of UV-cured semi-IPN structure acrylic pressure sensitive adhesives, J. Adhes. Sci. Technol., 20, 1573-1594 (2006).  https://doi.org/10.1163/156856106778884271
  12. B. Sun, H. Wang, Y. Fan, X. Chu, S. Liu, S. Zhao, and M. Zhao, Fully cross-linked UV-induced peelable acrylic PSA prepared from a dual curable castor oil based urethane acrylate oligomer for wafer dicing, Prog. Org. Coat., 163, 106680 (2022). 
  13. P. Hao, T. Zhao, L. Wang, S. Liu, E. Tang, and X. Xu, IPN structured UV-induced peelable adhesive tape prepared by isocyanate terminated urethane oligomer crosslinked acrylic copolymer and photo-crosslinkable trifunctional acrylic monomer, Prog. Org. Coat., 137, 105281 (2019). 
  14. C. Ryu, B. Pang, J. Han, and H. Kim, Effect of Photo-crosslinking on Clean Debonding of Acrylic Pressure Sensitive Adhesives from Silicon Wafer, J. Photopolym. Sci. Technol., 25, 705-712 (2012).  https://doi.org/10.2494/photopolymer.25.705
  15. B. Pang, C. Ryu, X. Jin, and H. Kim, Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide, Appl. Surf. Sci., 285, 727-731 (2013).  https://doi.org/10.1016/j.apsusc.2013.08.117
  16. B. Pang, C. Ryu, and H. Kim, Effect of naphthyl curing agent having thermally stable structure on properties of UV-cured pressure sensitive adhesive, J. Ind. Eng. Chem., 20, 3195-3200 (2014).  https://doi.org/10.1016/j.jiec.2013.11.065
  17. J. Han, Y. Zhou, G. Bai, W. Wei, X. Liu, and X. Li, Preparation of photo-crosslinkable acrylic copolymer and its debonding property on silicon wafer, J. Adhes. Sci. Technol., 36, 424-436 (2022).  https://doi.org/10.1080/01694243.2021.1924001
  18. S. Lee, J. Park, C. Park, D. Lim, H. Kim, J. Song, and J. Lee, UV-curing and thermal stability of dual curable urethane epoxy adhesives for temporary bonding in 3D multi-chip package process, Int. J. Adhes. Adhes., 44, 138-143 (2013).  https://doi.org/10.1016/j.ijadhadh.2013.02.005
  19. H. Joo, Y. Park, H. Do, H. Kim, S. Song, and K. Choi, The curing performance of UV-curable semi-interpenetrating polymer network structured acrylic pressure-sensitive adhesives, J. Adhes. Sci. Technol., 21, 575-588 (2007).  https://doi.org/10.1163/156856107781192346
  20. R. Lomolder, F. Plogmann, and P. Speier, Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners, J. Coat. Technol. Res., 69, 51-57 (1997). https://doi.org/10.1007/BF02696250