• Title/Summary/Keyword: UV resistance

Search Result 414, Processing Time 0.026 seconds

Durable Press Finish of Cotton via Dual Curing Using UV Light and Heat

  • Jang, Jinho;Yoon, Ki-Cheol;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.184-189
    • /
    • 2001
  • Continuous photografting/crosslinking of polyethyleneglycol dimethacrylate oligomers onto cotton using a water-soluble benzophenone photoinitiator was investigated. Photografting increased with increasing irradiation dose, oligomer concentration and photoinitiator concentration. Maximum grafting efficiency of DM 400 and 600 were 83% and 79%, respectively. the photografting increased the wrinkle resistance of cotton implying surface crosslinking of cotton. bothsurface crosslinking and bulk crosslinking of cotton were accomplished via dual curing of a mixed formulation containing both a thermally curable component (BTCCA/SHP) and a UV-curable component. The wrinkle resistance of the crosslinked cotton was found to be higher when cured by thermal curing due to the facile post-polymerization of the UV active component. The presence of crosslinks in the dually crosslinked cotton was verified with FT-IR and thermogravimetric analysis.

  • PDF

The Weatherability of Non-woven Geotextiles Used in Reinforced Earth Wall (보강토옹벽에 적용되는 지오텍스타일의 내후성)

  • 유중조;김영윤;전한용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.419-424
    • /
    • 2001
  • In the KOESWall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.

  • PDF

Applicability Investigation of E.coli, RNA and DNA Bacteriophages for Possible Indicator Microorganisms Based on the Inactivation Effectiveness by UV (UV 불활성화 효과에 의거한 E.coli, RNA 및 DNA 박테리오파지의 대체 지표 미생물로서의 적용성 검토)

  • Kim, Il-Ho;Wahid, Marfiah AB;Tanaka, Hiroaki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1063-1068
    • /
    • 2010
  • This study compared UV and UV/$H_2O_2$ inactivation of E.coli, a possible indicator microorganism for fecal contamination of water, and $Q{\ss}$ phage, an indicator for pathogenic viruses. UV inactivation of $Q{\ss}$, T4 and lambda phages in actual secondary effluent was investigated, too. As a result, similar inactivation efficiency between $Q{\ss}$ phage and E.coli was observed during UV treatment, while $Q{\ss}$ phage showed higher resistance to UV/$H_2O_2$ than E.coli. $Q{\ss}$ phage resistance to UV or UV/$H_2O_2$ does not reflect those of all pathogenic viruses. However, the result tells that the use of E.coli inactivation efficiency in evaluating microbiological safety of water could not always ensure the sufficient safety from pathogenic viruses. Meanwhile, $Q{\ss}$ phage showed less resistance to UV than T4 and lambda phages, indicating that the use of $Q{\ss}$ phage as an indicator virus may bring insufficient disinfection effectiveness by causing the introduction of lower UV dose than required. Consequently, it can be thought that T4 or lambda phages would be more desirable indicators in ensuring the sufficient disinfection effectiveness for various pathogenic viruses.

Isolation and Characterization of Ultra-Violet and Gamma-radiation Resistant Bacteria from Natural Habitats (자연 생태계로 부터 자외선 및 방사선 내성 박테리아의 분리 및 특성 연구)

  • 이영남;이인정
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.297-303
    • /
    • 1989
  • Attempts to isolate the naturally occurring ultra-violet resistant bacteria from environmental sources were made. The isolates, designated No.29, 100, and 107, among numbers of bacterial isolates revealed a remarkable resistance to UV ray, whose degree of resistance in dose/response kinetics was comparable to that of an endospore-former, Bacillus subtilis. In a range of 100-300 $Jm^{-2}$/min of UV irradiation, the isolates exhibited 500-1000 fold resistance compated with E. coli. The isolated appeared to possiss cell-bound pigment of organge or crimson-red. The isolate 29 is spherical in pairs or tetrads, whereas the isolates 100 and 107 are rod. All are Gram-gositive bacteria and seemed to be non-endospore-bearer. A number of biochemical studies pursued on the isolates suggested that they are quite different to each other. Electron microscopic examination and the physiological characters of the isolate 29 suggested that this UV resistant spherical bacterium might be one species of Deinococcus, probably Deinococus radiophilus. Since there is no documents on UV resistant, Gram-positive, non-sporeformer bacillus so far, the isolates 100 and 107 might be turned out as new kinds of UV resistant bacteria occurring in nature by further investigation.

  • PDF

Properties and UV-cut effects of cotton fabric treated with $TiO_2$/PEG ($TiO_2$/PEG처리 면직물의 물성과 자외선 차단성능)

  • 김정진;장정대
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • Cotton fabric was treated with $TiO_2$-PEG600 dispersion colloid by pad-dry-cure and wet-fixation process to improve the performance properties as well as UV-cut effect. As the concentration of $TiO_2$/PEG increased tensile strength, crease resistance, stiffness of treated cotton fabric increased. Application of wet-fixation method provided a further improvement in tensile strength, crease resistance, stiffness of treated cotton fabric. Cotton fabric treated with $TiO_2$/PEG was more efficient in UV-cut property than untreated cotton.

The Aging Characteristics of Polymer Electrical Insulation Materials bv UV Radiation and Salt Water Spray (옥외용 고분자 전기절연재료의 염수 및 UV조사에 의한 열화 특성)

  • 최남호;한상일;한상옥;박강식;김종석;박양범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.221-224
    • /
    • 1997
  • In this study we investigated the acting characteristics of Polymers for electrical insulation by UV radiation and salt water spray treatment. We used the Polymers such as EPDM, SR. PTFE. EVA. We measured contact angle and surface resistance to know the aging characteristic of Polymer surface. And we use SEM to observe the change of the surface shape. Dry flashover voltage test impulse voltage test were carried for the polymer insulator(EVA) . Through this experiment and the analysis we could know the polymers have a good resistance to weathering conditions like as salt spray UV irradiation and mix of them. And we can compare the aging characteristics between Polymers. As a result, we could know that the surface characteristics of PTFE is better than the other. And the degree, electrical characteristics is affected by change of surface shape is not big.

  • PDF

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Surface Characteristics and Tracking Resistance of Epoxy Insulating Materials against Ultraviolet (자외선 열화에 의한 에폭시 절연재료의 표면특성과 내트래킹성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.495-496
    • /
    • 2008
  • This paper describes the influence of Ultra-violet irradiation on time to tracking resistance of epoxy insulating materials by use of the inclined plane test. And, the influence of surface degradation was evaluated through several method such as measurement of contact angle, surface roughness, using a scanning electron microscopy. As the 1000 hours of the surface degradation with UV-CON, the flashover time decreases at different rates depending on epoxy resin and silicone rubber specimen. As the duration of the surface degradation with UV-CON is prolonged, the contact angle of epoxy resin decreases at the rate of degradation time, while that of silicone rubber was not exchanged. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials. Also, as to epoxy resin, the decrease of hydrophobicity due to surface degradation with UV-CON is greater than that resulting from surface degradation with WOM. The UV radiation produced chalking and crazing on the surface of the insulating materials specimen.

  • PDF

Weatherability Assessment of Nonwoven Geotextiles by Field Exposure Test (현장노출시험에 의한 부직포 지오텍스타일의 내후성 평가)

  • Jeon, Han-Yong;Yuu, Jung Jo;Kim, Young Yoon;Byun, Sung Weon;Byun, Sung Weon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In the reinforced retaining wall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.

  • PDF

NO2 gas sensing properties of UV activated ZnS nanowires at room temperature (상온에서 UV 활성화된 ZnS 나노와이어의 NO2 가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.297-302
    • /
    • 2014
  • ZnS nanowires were synthesized in order to investigate $NO_2$ gas sensing properties. They were grown on the sapphire substrate using ZnS powders. SEM (scanning electron microscopy) showed the diameter and length of the ZnS nanowires were approximately in the range of 50 - 100 nm and a few $10s\;{\mu}m$, respectively. They were also found to be composed of Wurtzite- structured single crystals from TEM (transmission electron microscopy) analysis. $NO_2$ gas sensing performance of the ZnS nanowire was measured with electrical resistance changes caused by $NO_2$ gas with a concentration of 1-5ppm. The sensor was UV treated with an intensity of $1.2mW/cm^2$ to facilitate charge carrier transfer. The responses of the ZnS nanowires to the $NO_2$ gas at room temperature, treated with UV of two different wavelengths of 365 nm and 254 nm, are measured to be 124.53 - 206.87 % and 233.97 - 554.83%, respectively. In the current work, the effect of UV treatment on the gas sensing performance of the ZnS nanowires was studied. And the underlying mechanism for the electrical resistance changes of the ZnS nanowires by $NO_2$ gas was also discussed.