• 제목/요약/키워드: UV laser

검색결과 421건 처리시간 0.032초

변형률 속도 효과를 고려한 355nm UV 레이저 다중 펄스 미세가공의 전산해석에 관한 연구 (A Study on the Computational Analysis of 355nm UV Laser Multiple-Pulsed Micro Machining Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;남기중;류광현;신석훈;신보성
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.29-33
    • /
    • 2010
  • UV laser micromachining of metallic materials has been used in microelectronic and other industries. This paper shows on experimental investigation of micromachining of copper using a 355nm UV laser with 50ns pulse duration. A finite element model with high strain rate effect is especially suggested to investigate the phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. In order to consider the strain rate effect, Cowper-Symonds model was used. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, a commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computational simulation of the UV laser micro machining behavior for thin copper material. From these computational results, depth of the dent (from one to six pulsed) were observed and compared with previous experimental results. This will help us to understand interaction between UV laser beam and material.

나노초 UV 레이저 응용 IC 기판 소재 조성별 가공 특성 (Characteristics of direct laser micromachining of IC substrates using a nanosecond UV laser)

  • 손현기;신동식;최지연
    • 한국레이저가공학회지
    • /
    • 제15권3호
    • /
    • pp.7-10
    • /
    • 2012
  • Dimensions (line/space) of circuits in IC substrates for high-end chips (e.g. CPU, etc.) are anticipated to decrease as small as $10{\mu}m/10{\mu}m$ in 2014. Since current etch-based circuit-patterning processes are not able to address the urgent requirement from industry, laser-based circuit patterning processes are under active research in which UV laser is used to engrave embedded circuits patterns into IC substrates. In this paper, we used a nanosecond UV laser to directly fabricate embedded circuit patterns into IC substrates with/without ceramic powders. In experiments, we engraved embedded circuit patterns with dimensions (width/depth) of abut $10{\mu}m/10{\mu}m$ and $6{\mu}m/6{\mu}m$ into the IC substrates. Due to the recoil pressure occurring during ablation, the circuit patterning of the IC substrates with ceramic powders showed the higher ablation rate.

  • PDF

Sterilization of Escherichia coli Based on Nd: YAG Resonator with a Pulsed Xenon Flashlamp

  • Kim, Hee-Je;Kim, Dong-Jo;Hong, Ji-Tae;Xu, Guo-Cheng;Lee, Dong-Gil
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.275-279
    • /
    • 2011
  • Sterilization of Escherichia coli (E. coli) is examined using a unique pulsed ultra-violet (UV) elliptical reactor based on Nd:YAG laser resonator, UV radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV contained. Sterilization method by using the UV light is fast, environment-friendly and it does not cause secondary pollution. A Nd:YAG laser resonator having elliptical shape has advantage of concentrating the radiation of the UV light at two foci as the quart sleeve filled with E. coli. The primary objective of this research is to determine the important parameters such as pulse per second (pps), the applied voltage for sterilizing E. coli by using an UV elliptical reactor. From the experiment result, the sterilization effect of UV elliptical reactor is better than that of UV cylindrical reactor, and it can be 99.9% of sterilization at 800V regardless of the pps within 10 minutes.

355nm UV 레이저를 이용한 선택적 하이브리드 구조 필름의 제작에 관한 연구 (A study on selective hybrid-structure film fabricated by 355nm UV-pulsed laser processing)

  • 김명주;이상준;신보성
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.2979-2984
    • /
    • 2015
  • 본 연구에서는 발포제를 이용하여 형성된 기공을 확대하는 방식의 공정으로써, 선택적 하이브리드 구조의 폴리머 필름의 제작을 위한 새로운 발포기술을 제시하였다. 기존의 발포제만을 이용한 폐쇄형 기공보다 큰 기공을 형성하기 위해서 PP에 발포제와 구리분말(Copper powder)을 혼합하여 만든 필름 내부에 355nm파장의 UV 펄스레이저를 이용하여 LAMO(Laser Aided Micro pore Opening) 공정 방식을 통한 기공의 크기를 확장하는 실험을 진행하였다. 그 결과 발포공정만 수행된 기공의 크기보다 추가적인 LAMO 공정을 통해 형성된 기공의 크기가 훨씬 더 크게 관찰되었다. 본 실험의 결과를 통해 LAMO 공정에 의한 기공의 특성과의 상관관계를 파악할 수 있었으며, 기존의 UV laser를 이용하여 원하는 부위에 선택적으로 폐쇄형 기공을 형성하는 것 이상으로 기공의 크기를 제어하는 방안을 제시하고자 한다.

고출력 Nd:YAG UV레이저를 이용한 polyimide층과 Cu-metal층의 가공상태에 대한 실험적 고찰 (Experimental Investigation for Ablation Characteristics of Polyimide Layer and Cu-metal Layer using High Power Nd:YAG UV Laser)

  • 최경진;이용현
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.31-36
    • /
    • 2009
  • In this paper, the laser cutting characteristics of the flexible PCB using high power Nd:YAG UV laser were investigated. A specific FPCB model was selected for the experiment. Test sheets were made, which had equal materials and layer structure to those of the outline (OL) region and the contact pad (CP) region in the FPCB. The experiment is made up of two stages. In the first stage of the experiment, the laser cutting fluence was found, which is the threshold fluence to cut the test sheets completely. The laser cutting fluence of the OL sheet is $1781.26{\sim}1970.16\;J/cm^2$ and that of the CP sheet is $2109.34{\sim}2134.34\;J/cm^2$. In the second stage, cutting performance and its qualities were analyzed by the experiment. The laser cutting performance remained almost unchanged for all laser and process parameter sets. The average cutting width (top side/bottom side) of the OL sheet was $40.45\;{\mu}m/11.52\;{\mu}m$ and that of the CP sheet was $22.14\;{\mu}m/10.93\;{\mu}m$. However, the laser cutting qualities were different according to the parameters. The adjacent region of the cutting line on the OL sheet was carbonized as the beam speed was low and the overlap coefficient was high. The surface quality around the cutting line of the CP sheet was about the same. Carbonization and debris occurred on the surface of the cutting line. As a result of the experiment, the cutting qualities were better as the overlap coefficient was made low and beam speed high. Therefore, the overlap coefficient 2 or 3 is proper for the FPCB laser cutting.

  • PDF