• Title/Summary/Keyword: UV lamp

Search Result 274, Processing Time 0.025 seconds

The Soft Material Obtained from an Europium (III)-Containing Ionic Liquid

  • Shao, Huifang;Wang, Yige;Li, Dan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.973-976
    • /
    • 2011
  • The addition of organic ligand (${\beta}$-diketone or heterocyclic compound) to the europium (III)-containing ionic liquid resulted in bright luminescent soft materials with the molar ratio of europium/ionic liquid (IL)/ligand being 1:3:1 that exhibit bright red light under UV lamp. The luminescent properties such as emission features and lifetime of $^5D_0$ $Eu^{3+}$ excited level are dependent on the organic ligands. The materials were characterized by FT-IR and luminescence spectroscopy. The data shows that at least parts of the ILs (carboxylic acid) are replaced with ${\beta}$-diketone ligand rather than the formation of europium complex with the molar ratio of $Eu^{3+}$:IL: ligand being 1:3:1, while no ILs could be replaced by the heterocyclic ligand such as Bpy and Phen.

Photochemical Studies of Schiff Base Cu(II) Complex: (1) UV-Irradiation of N,$N^{\prime}$-bis(salicylidene)ethylenediamine copper(II)

  • An, Byeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.202-204
    • /
    • 1995
  • The ultraviolet photochemistry of N,N'-bis(salicylidene)ethylenediamine copper(II), Cu(sal)2en, was investigated with low pressure mercury lamp. Redution of Cu(Ⅱ) and formation of Cl- were shown on 254 nm irradiation both for aerated and deaerated chlorinated hydrocarbon solvent such as CH2Cl2, chloroform, and 1,2-dichloroethane. Relatively long lived $({\tau}=100{\mu}sec)$ intermediate was detected by flash photolysis. Overall photo-process can be described as the formation of Cl- and new copper complex, product(1) by chlorohydrocarbon mediation, photoinduced reduction by abstraction of halogen from solvent, followed by redox induced substitution of axial ligand with chlorine. Product(1) is possibly Cu(III) chlorosalicylaldeimido complex and cyclic -CH2CH2- moiety is absent in the structure. 247nm band of Cu(sal)2en should contain ligand to metal charge transfer character.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

Degradation of Chlorinated Hydrocarbons via a Light-Emitting Diode Derived Photocatalyst

  • Jo, Wan-Kuen;Lee, Joon Yeob
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • In this study, the applicability of visible light-emitting-diodes (LEDs) to the photocatalytic degradation of indoor-level trichloroethylene (TCE) and perchloroethylene (PCE) over N-doped $TiO_2$ (N-$TiO_2$) was examined under a range of operational conditions. The N-$TiO_2$ photocatalyst was calcined at $650^{\circ}C$ (labeled N-650) showed the lowest degradation efficiencies for TCE and PCE, while the N-$TiO_2$ photocatalysts calcined at $350^{\circ}C$, $450^{\circ}C$, and $550^{\circ}C$ (labeled as N-350, N-450, and N-550, respectively) exhibited similar or slightly different degradation efficiencies to those of TCE and PCE. These results were supported by the X-ray diffraction patterns of N-350, N-450, N-550, and N-650. The respective average degradation efficiencies for TCE and PCE were 96% and 77% for the 8-W lamp/N-$TiO_2$ system, 32% and 20% for the violet LED/N-$TiO_2$ system, and ~0% and 4% for the blue LED/N-$TiO_2$ system. However, the normalized photocatalytic degradation efficiencies for TCE and PCE for the violet LED-irradiated N-$TiO_2$ system were higher than those from the 8-W fluorescent daylight lamp-irradiated N-$TiO_2$ system. Although the difference was not substantial, the degradation efficiencies exhibited a decreasing trend with increasing input concentrations. The degradation efficiencies for TCE and PCE decreased with increasing air flow rates. In general, the degradation efficiencies for both target compounds decreased as relative humidity increased. Consequently, it was indicated that violet LEDs can be utilized as energy-efficient light sources for the photocatalytic degradation of TCE and PCE, if operational conditions of N-$TiO_2$ photocatalytic system are optimized.

Experiment on Reduction of Pollutants in Titanium Dioxide Photocatalytic Ventilation System (이산화티탄 광촉매 환기장치의 오염물질 저감 실험)

  • Song, Yong Woo
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, titanium dioxide photocatalyst was applied to the ventilation system to reduce particulate matter and nitrogen oxides (NOx), which are representative indoor harmful substances. A reaction device capable of installing an ultraviolet lamp was designed and manufactured so that the pollutant decomposition effect of the titanium dioxide photocatalyst identified through previous studies could be applied indoors. The reaction device was used on the indoor ventilation system and applied to the Mock-Up test. As a result of the Mock-up test, the NOx reduction performance according to the change in air volume once per hour and five times per hour was confirmed. As a result, it was confirmed that as the number of ventilation increases, the NOx reduction time decreases proportionally, and the reduction performance increases.

Development of a Screening Method and Device for the Detection of Escherichia coli from Agri-Food Production Environments and Fresh Produce

  • Yun, Bohyun;An, Hyun-Mi;Shim, Won-Bo;Kim, Won-Il;Hung, Nguyen Bao;Han, Sanghyun;Kim, Hyun-Ju;Lee, Seungdon;Kim, Se-Ri
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2141-2150
    • /
    • 2017
  • This study was conducted to develop a screening method using Colilert-18 and a device for the detection of E. coli from agri-food production environments and fresh vegetables. The specificity and sensitivity of Colilert-18 by temperature ($37^{\circ}C$ and $44^{\circ}C$) were evaluated with 38 E. coli and 78 non-E. coli strains. The false-positive rate was 3.8% (3/78) and 0% (0/78) at $37^{\circ}C$ and $44^{\circ}C$, respectively. The detection limit of E. coli at $37^{\circ}C$ at <1.0 log CFU/250 ml was lower than that at $44^{\circ}C$. The efficiency of the developed device, which comprised an incubator equipped with a UV lamp to detect E. coli in the field, was evaluated by measuring the temperature and UV lamp brightness. The difference between the set temperature and actual temperature of the developed device was about $1.0^{\circ}C$. When applying the developed method and device to various samples, including utensils, gloves, irrigation water, seeds, and vegetables, there were no differences in detection rates of E. coli compared with the Korean Food Code method. For sanitary disposal of culture samples after experiments, the sterilization effect of sodium dichloroisocyanurate (NaDCC) tablets was assessed for use as a substitute for an autoclave. The addition of one tablet of NaDCC per 50 ml was sufficient to kill E. coli cultured in Colilert-18. These results show that the developed protocol and device can efficiently detect E. coli from agri-food production environments and vegetables.

Alteration of Endogenous Growth Substances in Cold-moist Stratified Seeds of Ginkgo biloba L. (냉습적(冷濕積)에 따른 은행나무종자내(種子內) 생장조정물질(生長調整物質)의 변화(變化))

  • Lee, Kyong Jae;Yim, Kyong Bin
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.1-12
    • /
    • 1978
  • This study has intended to disclose the change of some chemical compositions of Ginkgo seeds which were acquired the treatment of cold-moist-stratification after collection. As check sample, the room-stored seeds were used. With the reasons that when the seeds not stratified were sown the delay of field germination has usually been resulted, the effectiveness of stratificaation in respect to alteration of chemical composition is to be investigated. The increase and decrease of growth promoting and inhibiting substances were investigated by means of chromatography method followed by rice seedling test or wheat coleoptile straight-growth test. The results obtained are summarized as follows; 1. In the untreated seeds, the zone of growth inhibitors on paper chromatograph were observed without regard to the tissue differences, embryo, endosperm and seedcoat. 2. Due to stratification, the amount of inhibitor has decreased in the embryo and seed coat, but growth promoters was decreased as compared with the check materials 3. The indications of results appear that each portion of the embryo, endosperm, and seedcoats of Ginkgo biloba L. contains the growth in hibitor taking part in germination dormancy. 4. It was presumed that hastening germination was influenced by decreasing of inhibitors in the embryo and seed coats rather than by increasing of promoters. 5. Gibberellin was detected at Rf 0.26 under the UV-lamp and the abscisic acid was detected at Rf 0.62, Rf 0.70, and Rf 0.78 and showed purple, gray, blue fluorescence respectively under the UV-lamp.

  • PDF

Microwave-assisted Photocatalytic Degradation of Methylene Blue (마이크로웨이브가 부가된 광촉매에 의한 메틸렌블루의 분해)

  • Kim, Yu-Bong;Jo, A-Ra;Ra, Deog-Gwan;Park, Jae-Hyeon;Kim, Sun-Jae;Jung, Sang-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.817-822
    • /
    • 2008
  • In this study, the photocatalytic degradation of methylene blue in TiO$_2$ particles-dispersed water solution was carried out by irradiating microwave and UV light simultaneously. A microwave-discharged electrodeless UV lamp was developed to use microwave and UV simultaneously for photocatalytic reactions. The results of photocatalytic degradation of methylene blue showed that the decomposition rate increased with the microwave intensity, the circulating fluid velocity, and the amount of TiO$_2$ particles and auxiliary oxidizing agents added. Especially, the rate constant of H$_2$O$_2$-added photocatalytic reaction increased about three times from 0.0075 min$^{-1}$ to 0.0250 min$^{-1}$ when microwave was additionally irradiated. This study demonstrates that the microwave irradiation can play a very important role in photocatalytic degradation using peroxides although it is not easy to quantitatively assess the effect of microwave on photocatalytic reactions from the experimental data of this study.

Manufacturing of Metal Micro-wire Interconnection on Submillimeter Diameter Catheter (서브-밀리미터 직경의 카테터 표면 위 금속 마이크로 와이어 접착 공정)

  • Jo, Woosung;Seo, Jeongmin;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we investigated a manufacturing process of metal micro-wire interconnection on submillimeter diameter catheter. Over the years, flexible electronic researches have focused on flexible plane polymer substrate and micro electrode manufacturing on its surface. However, a curved polymer substrate, such as catheter, is very important for medical application. Among many catheters, importance of submillimeter diameter steerable catheter is increasing to resolve the several limitations of neurosurgery. Steering actuators have been researched for realizing the steerable catheter, but there is no research about practical wiring for driving these actuators. Therefore we developed a new manufacturing process for metal micro-wire interconnection on submillimeter diameter catheter. We designed custom jigs for alignment of the metal micro-wires on the submillimeter diameter catheter. An UV curing system and commercial products were used to reduce the manufacturing time and cost; Au micro-wire, UV curable epoxy, UV lamp, and submillimeter diameter catheter. The assembled catheter was characterized by using an optical microscope, a resistance meter, and a universal testing machine.

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF