• Title/Summary/Keyword: UV Efficiency

Search Result 810, Processing Time 0.027 seconds

Research on the Colorants Extraction from Black Cowpea Seed Coats and their Storage Stability (검정동부 종피에서의 색소 추출과 추출색소의 저장 안정성 연구)

  • Jung, Yang Sook;Choi, Kyung-Jin;Kang, Hang-Won;Bae, Do-Gyu
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2011
  • The purpose of this study was to search available resources for new natural colorants. The extraction efficiency of colorants from black cowpea seed coats and their storage stability were examined according to the various extraction and storage conditions in this study. The results obtained were as follows: the optical density (O.D.) values of the extracted colorants increased with increasing extract time and temperature. Extraction at pH 4 was seen to be the most efficient among the various pH conditions. The color of the extract solutions were seen to change with variation in pH, for example, anthocyanins display color changes from orange-red, to orange, to blue, to greenish-blue at pH 3.0, 4.0-6.0, 7.0 and 9.0-11.0, respectively. The color changes of the extract solutions over various storage periods were determined using UV/Vis spectra these color changes indicate characteristic absorption patterns and a discoloration index which indicates the rate of absorbance (532 nm/454 nm). Methionine addition influenced the storage stability of the colorant solutions and this addition led to better storage stability than non-addition. In paper chromatography of juice extracted colorant, a long stripe was seen on development. Among three colorants obtained via paper chromatography according to development rate, at least two different colorants were mixed indicated by the appearance, or not, of a shoulder at 552 nm depending on the extent of development.

Assessment for the Comparability between Korean Ministry of Environment Standard and ISO Standard for the Determination of Heavy Metals in Soil (토양 중금속 함량 측정에 대한 토양오염공정시험기준과 국제표준간의 적합성 평가)

  • Shin, Gun-Hwan;Lee, Goon-Teak;Lee, Won-Seok;Kim, Ji-In;Kim, Bo-Kyong;Park, Hyun-Jeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • According to the agreement on WTO/TBT, we are under the situation to adopt international standard (ISO standard) as a national standard if it exists. However, in case of environmental area, it is a domestic legal obligation to use Korean environmental standard method(KESM) for analyzing various contaminants. Therefore it is necessary to assess the comparability between KEM and ISO standard prior to apply ISO standard to soil conservation law in Korea. The main purpose of this study is to assess the comparability of both methods for analyzing heavy metals in soil. We looked over various aspects like pre-treatment, calibration curve range, detection wavelength, soil organic matter content and so on. Apparently, the procedure of both methods is almost same. However in details, both methods are different in stationary time before aqua-regia extraction using reflux system, calibration curve range for Cu, Pb, Ni and measuring wavelength for Pb. According to the results of comparison test, the results were significantly different when the different calibration range was used. In case that all the extracts independent of methods were reanalyzed with the same calibration range of each method, both methods showed statistically same results. Other conditions like different stationary time, measuring wavelength of AAS and soil organic matter content did not have any influence on the analytical result. Therefore, we suggest to extend the calibration curve range to 0~8 mg/L which is used in KS I ISO standard(Korean standard related with environment which is translation version of ISO standard without any technical change). In case of $Cr^{6+}$, the results showed no significant differences between two methods even though the pretreatment, instrumentation and other analysis conditions were different. In addition to UV/Visble spectrometry of KESM for soil contamination, we suggest to adopt ion chromatography of ISO 15192(US EPA method 7199) for analyzing $Cr^{6+}$ with the consideration of laboratory work efficiency.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst (Ti-구형활성탄의 유동상 광촉매 특성 평가)

  • Lee, Joon-Jae;Suh, Jeong-Kwon;Hong, Ji-Sook;Park, Jin-Won;Lee, Jung-Min
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.375-381
    • /
    • 2006
  • In this sturdy, spherical activated carbon(SPAC) contained $TiO_2$ was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by $TiCl_3$ aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about $350{\mu}m{\sim}400{\mu}m$ and $617m^2/g$ specific surface area. Structure of $TiO_2$ in Ti-SPAC was anatase and rutile form. Also, $TiO_2$ on SPAC were found that the $TiO_2$ were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

A Study of Efficient Removal of 2-Methylisoborneol and Geosmin by Pulsed Ultraviolet and Ultrasound (효율적인 2-Methylisoborneol, Geosmin의 제거를 위한 Pulsed UV 공정과 Ultrasound 공정의 비교 연구)

  • Han, Jonghun;Hur, Jiyong;Kim, Kangwook;Lee, Junyoung;Park, Wonseok;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The degradation of off-flavors which is 2-Methylisoborneol (2-MIB) and geosmin by means of ultrasound (US) and pulsed ultraviolet (PUV) irradiation and its combination with catalyst (wire mesh, wire mesh coated TiO2, and TiO2) and additive (H2O2) were investigated via water system. A combination treatment of TiO2 and H2O2 heterogeneity with US (24 kHz) and PUV (6000 W) has shown improved results in destroying 2-MIB and geosmin, which may be attributed to chain reactions by the enhanced formation of hydroxyl radicals (·OH) through H2O2 dissociation and reactive oxide ions of TiO2 addition. Rapid degradation of off-flavors occurred within 2 min under PUV process with H2O2 100 mg/L (81.5% for 2- MIB; 79.3% for geosmin) and TiO2 100 mg/L (83.7% for 2-MIB; 79.8% for geosmin), while compared with H2O2 100 mg/L (58.4% for 2-MIB; 58.0% for geosmin) and TiO2 100 mg/L (59.2% for 2-MIB; 38.5% for geosmin) within 5 min under US process. Surprisingly, the emphasis was given on the comparison with the same injected energies between PUV and US on degradation efficiency. Based on the injected energy comparison, the US provided better degradation performance under equal input power of 200 kJ with H2O2 100 mg/L, while compared with H2O2 100 mg/L under PUV process. Our findings suggest that US can be more effective compared to PUV for the degradation of off-flavors in aspect of energy consumptions.

Preparation and Characterizatino of Nano-sized Liposome Containing Proteins Derived from Coptidis rhizoma (황련유래 단백질이 함유된 나노리포좀의 제조 및 특성)

  • Oh, Seng Ryong;Lee, Sang Bong;Cho, Kye Min;Choi, Moon Jae;Jin, Byung Suk;Han, Yong Moon;Lee, Young Moo;Shim, Jin Kie
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Coptidis Rhizoma, an antimicrobial agent from natural source, is known to have the antiviral effect on the Candida albicans that causes the infectious dermatitis. The valuable protein was extracted from the Coptidis Rhizoma, To prevent denaturalization from external stimulus and improve adsorption onto the skin, the nano-sized liposomes were prepared as a carrier. The CPR-containing liposomes showed an average diameter of 187 nm, surface charge of 3.337 mV and 33% encapsulation efficiency. The release behavior of CRP from the liposome was investigated with various temperature and releasing time. The PVA solution was coated on the surface of liposome to improve the stability. The coated liposome showed slow release behavior in comparison with the non-coated liposome. The CRP in the liposome maintained the effect on the Candida albicans after treating it at 50 and with ultraviolet for 24 h.

Dye-Sensitized Solar Cell Based on TiO2-Graphene Composite Electrodes (TiO2와 Graphene 혼합물을 전극으로 사용한 염료감응형 태양전지특성 연구)

  • Battumur, T.;Yang, Wooseung;Ambade, S.B.;Lee, Soo-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.177-181
    • /
    • 2012
  • Dye-sensitized solar cells(DSSCs) based on $TiO_2$ film photo anode incorporated with different amount of grapheme nanosheet(GNS) are fabricated and their photovoltaic performance are investigated. The $TiO_2$-GNS composite electrode has been prepared by a direct mixing method. The DSSC performance of this composite electrode was measured using N3 dye as a sensitizer. The performance of DSSCs using the $TiO_2$-GNS composite electrodes is dependent on the GNS loading in the electrodes. The results show that the DSSCs incorporating 0.01 wt% GNS in $TiO_2$photo anode demonstrates a maximum power conversion efficiency of 5.73%, 26% higher than that without GNS. The performance improvement is ascribed to increased N3 dye adsorption, the reduction of electron recombination and back transport reaction as well as enhancement of electron transport with the introduction of GNS. The presence of both $TiO_2$(anatase) and GNS has been confirmed by FieldEmission Scanning Electron Microscopy(FE-SEM). The decrease in recombination due to GNS in DSSCs has been investigated by the Electrochemical Impedance Spectroscopy.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

Extraction of Pigment from Sea Mustard ( Undaiia pinnatinda) using Supercritical Carbon Dioxide and Entrainer (초임계 이산화탄소와 보조용매를 이용한 미역으로부터 색소 추출)

  • HONG Seok-Ki;CHUN Byung-Soo;PARK Sun-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-217
    • /
    • 2001
  • In order to develop a new separation technology, supercritical fluid extraction process was used to produce high purity pigments and fatty acids from seaweed (Undaria pinnatifida). Supercritical carbon dioxide was used as a solvent and ethanol as an entrainer. The sample was treated by a frozen drier and experiments were conducted with a semi-batch flow system at various operating conditions (pressure range, $10.3\~17.2$ MPa; temperature range, $30\~45^{\circ}C$: particle size, $500\~1,000{\mu}m$ extraction time, 60 min). Characteristics of the recovered pigment (chlorophyll a) and fatty acids were determined by UV-spectrophotometry and gas chromatography, respectively. The highest extraction efficiency for fatty acids and pigments was achieved at 12.4 MPa, $35^{\circ}C$, $500{\mu}m$of seaweed size.

  • PDF