• 제목/요약/키워드: URBAN TEMPERATURE

검색결과 1,016건 처리시간 0.027초

A Study on Surface Temperature Patterns in the Tokyo Metropolitan Area Using ASTER Data

  • Fukui, Yuko
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1457-1459
    • /
    • 2003
  • This study reports the surface temperature pattern of the Tokyo Metropolitan area using the ASTER surface temperature product. The product is an image processed by applying temperature-emissivity separation to atmospheric corrected infrared thermal radiance of the land surface, then converted to surface temperature by using Planck's function. Daytime and nighttime observation in a cold season and a warm season were used in this study. As a result, 1) contrast between urban and suburban, 2) extraction of heating area in urban, 3) measurement of cooling effect of green space were achieved.

  • PDF

Landsat위성영상에 의한 용도지역 온도변화분석 (Temperature Change Analysis for Land Use Zoning Using Landsat Satellite Imagery)

  • 정길섭;구슬;유환희
    • 대한공간정보학회지
    • /
    • 제19권2호
    • /
    • pp.55-61
    • /
    • 2011
  • 토지이용이 인위적으로 이뤄져오면서 시외지역이나 공원지역에 비하여 도시지역의 온도가 상승하는 원인이 되어 왔다. 따라서 본 연구에서는 진주시를 대상으로 도시지역의 용도지역에 따른 온도변화를 Landsat TM/$ETM^+$ 영상을 이용하여 분석하였고, 정규식생지수와 온도변화와의 상관관계를 분석하는데 연구목적을 두었다. 그 결과 도시 표면온도의 분포가 용도지역별 정규식생지수(NDVI)값의 변화에 연계되어 있음을 알 수 있었다. 용도지역별 평균 온도를 고려하면 용도지역 중 공업지역이 가장 높은 반면 녹지지역은 가장 낮게 나타났다. 또한 도시온도와 정규식생지수와의 상관관계를 비교분석한 결과 녹지지역과 주거지역이 상업지역과 공업지역에 비해 높게 나타났으며, 이러한 연구결과는 도시열섬효과문제를 고려한 지속 가능한 도시계획을 수립하는데 중요한 요소로 활용될 것으로 기대된다.

도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의 (Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer)

  • 박경주;한범순;진한결
    • 대기
    • /
    • 제31권3호
    • /
    • pp.295-309
    • /
    • 2021
  • Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.

Landsat 영상을 이용한 도시확장과 지표온도 변화 탐지 (Detection of urban expansion and surface temperature change using Landsat imagery)

  • 손홍규;곽은주;방수남;박완용
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2004
  • Seoul has experienced a rapid urban expansion over the past three decades. This paper reports an investigation into the application of Landsat imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/use change detection w3s carried out by using Landsat data. The results revealed a notable urban growth in the study area. This urban expansion had raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF

관측과 기상모델을 이용한 춘천지역의 도시열섬현상 연구 (A Study of Urban Heat Island in Chuncheon Using WRF Model and Field Measurements)

  • 이종범;김재철;장윤정
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.119-130
    • /
    • 2012
  • Heat island phenomena in Chuncheon (Korea) were investigated using air temperature measured by automatic weather stations and temperature dataloggers located at rural and urban sites. Numerical simulation of the phenomena was performed using Weather Research and Forecasting Urban Canopy Model (WRF-UCM) and results were compared with the observation. The model was initialized with NCEP/FNL data. The horizontal resolution of the fine domain is 0.33 km. The results of observational analyses show that the intensity of heat island was significantly higher during the nighttime than during the daytime. The highest measured temperature difference between rural and urban site is $3.49^{\circ}C$ and average temperature difference varies between 1.4 and $1.9^{\circ}C$. Good agreement was found between the simulated and observed temperatures. However, significantly overestimated wind speed was found at the urban sites. The linear regression analysis between observed and simulated temperature shows high correlation coefficient 0.96 for urban and 0.94 for rural sites while for wind speed, a very low correlation coefficient was found, 0.30 and 0.55 respectively.

원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구 (A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS)

  • 조명희;이광재;김운수
    • 한국지리정보학회지
    • /
    • 제4권1호
    • /
    • pp.57-66
    • /
    • 2001
  • 본 연구에서는 도시표면온도를 추출하기 위하여 다시기 Landsat TM band 6 영상을 이용하여 과학기술부의 4가지 모델 즉 two-point linear model, linear regression model, quadratic regression model, cubic regression model에 대하여 각각 공간분석을 실시하였으며 그 결과를 AWS(automatic weather station) 관측자료와 상관 및 회귀분석 함과 동시에 GIS 공간분석 기법을 이용하여 도시 표면온도의 공간적 분포특성을 규명하였다. Landsat TM band 6으로부터 추출된 표면온도를 기초로 하여 토지피복별 표면온도 분포를 분석한 결과 도시 및 나지 지역이 가장 높은 온도분포대를 형성하고 있었으며, 표면온도와 NDVI간의 상관분석결과 평균 -0.85 정도의 음의 상관성을 확인할 수 있었다. 이와 같은 결과는 향후 기상환경 특성을 고려한 도시계획수립에 있어 중요한 인자로 작용할 것으로 사료된다.

  • PDF

도시공원 및 주변환경의 특성이 도시공간의 온도저감에 미치는 영향 (Heat Mitigation Effects of Urban Space based on the Characteristics of Parks and their Surrounding Environment)

  • 서정은;오규식
    • 한국환경복원기술학회지
    • /
    • 제23권5호
    • /
    • pp.1-14
    • /
    • 2020
  • In order to improve the urban thermal environment, efforts are being made to increase green areas in cities that include park construction, planting, and green roofing. Among these efforts, urban parks play an important role not only in improving the urban thermal environment, but also in terms of ecosystem services (serving as resting places for citizens, providing cleaner air quality, reducing noise, etc.). Therefore, the purpose of this study is to suggest planning and management guidelines for urban parks that are effective in improving the thermal environment, by analyzing the urban surface temperature reduction performance of urban parks. To do this, first, land surface temperature was calculated by using Landsat 8 images. Second, the PCI (Park Cool Island) index was calculated to identify the temperature reduction performance of urban parks. Third, the characteristics of parks (area, shape, vegetation) and the surrounding spatial characteristics (land cover, building-related variables, etc.) were identified. Finally, the relationship between the PCI indices (PCI scale, PCI effect, PCI intensity) and the characteristics of the parks and their surroundings were analyzed. The results revealed that the parks consisting of a larger area, simple shape, and higher tree coverage ratio had increased PCI performance, and were advantageous for improving the urban thermal environment. Meanwhile, PCI performance was found to have decreased in areas with a higher impermeable area ratio and building coverage ratio. The outcomes of this study can be used to identify priority areas for planning and management of urban parks and can also be utilized as planning and management guidelines for improving urban thermal environment.

Identifying Urban Heat Island Effects due to Urban Land Use Change

  • Shin Dong-hoon;Lee Kyoo-seock
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.22-24
    • /
    • 2004
  • The land use has changed rapidly since 1960s in accordance with urbanization in Seoul Metropolitan Region. As a result, the urban microclimate has undergone changes as well. This study aims to recognize trend of the urban heat island change which is caused by land use change during urbanization in large city. Thermal data of Landsat TM images in 1987 and 1999 were for land surface temperature change detection in the study.

  • PDF

도시 내 가로수의 광선투과량에 따른 온도저감 효과 - 서울시 서초구를 중심으로 - (Temperature Reduction Effect According to Light Transmittance of Urban Street Trees - Focused on Seocho-gu in Seoul -)

  • 김은범;김남춘;신지훈;송원경;김도희
    • 한국환경복원기술학회지
    • /
    • 제20권3호
    • /
    • pp.45-54
    • /
    • 2017
  • With rapid urbanization and reckless urban development in the 21st century, the urban environment has gradually gotten worse, and urban heat island effect has been dramatically intensified. Thus, the importance of street greenery that can mitigate the urban heat island effect has further been highlighted. In this regard, this study was aimed at selecting suitable plant species for street greenery to reduce the urban heat island effect. Towards this end, five roads located in Seocho-gu, Seoul were selected as study sites, and plant species composition and difference of surface temperature were compared and analyzed in relation to the light transmittance. The street with the greatest temperature difference is Bangbae-ro(Platanus occidentalis). On the other hand, the road with the lowest temperature difference is Nambusunhwan-doro(Metasequoia Glyptostroboides). The effect of temperature reduction was found to be associated with light transmittance.Bangbae-ro(Platanus occidentalis) with the lowest light transmittance showed the highest temperature difference and Nambusunhwan-doro(Metasequoia Glyptostroboides) with the highest light transmittance showed the lowest temperature difference. It is analyzed that there are most differences in temperature when the amount of lights coming in between the crown is small. The temperature reduction effect can be obtained by planting deciduous broad-leaved trees. Also species with dense crown and broad width of crown will be able to maximize the effect of temperature reduction. In future studies, it will be necessary to expand the other species of trees in the street, and analyze the germicidal trees and shrubs as well as the differences in the packaging materials.

E-GIS DB를 활용한 도시 고온화 영향인자 검토 (Examination of Factors Influencing Urban Higher Temperature using E-GIS DB)

  • 김금지;요코 카마타;이정재;윤성환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.44-49
    • /
    • 2009
  • In this study, we performed urrban climate simulation how both the factor of environmental land and artificial factors influence on the formation of urban temperature. With deducing quantitative data, this study could get more accurate results of the urban temperature using urban climate simulation system. In the case of natural land cover, it appeared that there are effects on the lowering temperature and the lower temperature rate appeared in the water land cover on the whole. This is considered as temperature in water land was low because of the characteristics of water land having evaporation latent heat was high and convective sensible heat was low. In case of building which has building coverage ratio, 5% with 10 floors and building coverage ratio, 15 % with 6 floors, it appears that the temperature in the water land is $33.6^{\circ}C$. In case of building coverage ratio 5%, temperature dropped when buildings has more than 4 stories. This is regarded as the size of building is bigger, the temperature dropped in relatively because of the fluctuation of the rate of solar heat from the land. At the present time, the urban temperature are higher because of various artificial factors in the city. With these results, this study supposed to be a basies of the future studies for considering both the composition of building coverate ratio and floor plan.

  • PDF