Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.3.295

Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer  

Park, Kyeongjoo (School of Earth and Environmental Sciences, Seoul National University)
Han, Beom-Soon (Department of Biological and Environmental Engineering, Semyung University)
Jin, Han-Gyul (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.31, no.3, 2021 , pp. 295-309 More about this Journal
Abstract
Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.
Keywords
Urban canopy layer; air temperature; relative humidity; diurnal variation; urban canyon aspect ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Skamarock, W. C., and Coauthors, 2019: A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 145 pp, doi:10.5065/1dfh-6p97.
2 Wang, Z.-H., E. Bou-Zeid, S. K. Au, and J. A. Smith, 2011: Analyzing the sensitivity of WRF's single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 1795-1814, doi:10.1175/2011JAMC2685.1.   DOI
3 Yang, J., M. Menenti, E. S. Kravenhoff, Z. Wu, Q. Shi, and X. Ouyang, 2019: Parameterization of urban sensible heat flux from remotely sensed surface temperature: Effects of surface structure. Remote Sens., 11, 1347, doi:10.3390/rs11111347.   DOI
4 Yang, P., G. Ren, and W. Hou, 2017: Temporal-spatial patterns of relative hu midity and the u rban dryness island effect in Beijing city. J. Appl. Meteor. Climatol., 56, 2221-2237, doi:10.1175/JAMC-D-16-0338.1.   DOI
5 Ryu, Y.-H., and J.-J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842-854, doi:10.1175/JAMC-D-11-098.1.   DOI
6 Lee, S.-H., H. Lee, S.-B. Park, J.-W. Woo, D.-I. Lee, and J.-J. Baik, 2016: Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model. Q. J. R. Meteorol. Soc., 142, 2562-2578, doi:10.1002/qj.2847.   DOI
7 Liu, R., Z. Han, J. Wu, Y. Hu, and J. Li, 2017: The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime. Atmos. Res., 197, 167-176, doi:10.1016/j.atmosres.2017.07.006.   DOI
8 Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Lay. Meteorol., 126, 73-102, doi: 10.1007/s10546-007-9221-6.   DOI
9 Loughner, C. P., D. J. Allen, D.-L. Zhang, K. E. Pickering, R. R. Dickerson, and L. Landry, 2012: Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol., 51, 1775-1793, doi:10.1175/JAMCD-11-0228.1.   DOI
10 Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer. Meteorol., 94, 357-397, doi:10.1023/A:1002463829265.   DOI
11 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682, doi: 10.1029/97JD00237.   DOI
12 Park, M.-S., and Coauthors, 2020: A building-block urban meteorological observation experiment (BBMEX) campaign in central commercial area in Seoul. Atmosphere, 11, 299, doi:10.3390/atmos11030299.   DOI
13 Ryu, Y.-H., and J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773-1794, doi:10.1175/2011JAMC2665.1.   DOI
14 Ryu, Y.-H., E. Bou-Zeid, Z.-H. Wang, and J. A. Smith, 2016: Realistic representation of trees in an urban canopy model. Bound.-Layer. Meteorol., 159, 193-220, doi: 10.1007/s10546-015-0120-y.   DOI
15 Shashua-Bar, L., Y. Tzamir, and M. E. Hoffman, 2004: Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int. J. Climatol., 24, 1729-1742, doi:10.1002/joc.1092.   DOI
16 UNDESA, 2019: World Urbanization Prospects: The 2018 revision. United Nations Department of Economic and Social Affairs, 103 pp [Available online at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf].
17 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J Korean Meteor. Soc., 42, 129-151.
18 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.   DOI
19 Kim, H.-O., and J.-M. Yeom, 2012: Effect of the urban land cover types on the surface temperature: Case study of Ilsan new city. Korean J. Remote Sens., 28, 203-214, doi:10.7780/kjrs.2012.28.2.203 (in Korean with English abstract).   DOI
20 Kim, D.-J., D.-I. Lee, J.-J. Kim, M.-S. Park, and S.-H. Lee, 2020: Development of a building-scale meteorological prediction system including a realistic surface heating. Atmosphere, 11, 67, doi:10.3390/atmos11010067.   DOI
21 Lee, C.-B., J.-C. Kim, and Y.-J. Jang, 2012: A study of urban heat island in Chuncheon using WRF model and field measurements. J. Korean Soc. Atmos. Environ., 28, 119-130, doi:10.5572/KOSAE.2012.28.2.119 (in Korean with English abstract).   DOI
22 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.   DOI
23 Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1-26, doi:10.1002/joc.859.   DOI
24 Bang, J.-H., M.-K. Hwang, Y. Kim, J. Lee, and I. Oh, 2020: High-resolution meteorological simulation using WRF-UCM over a coastal industrial urban area. J. Environ. Sci. Int., 29, 45-54, doi:10.5322/JESI.2020.29.1.45 (in Korean with English abstract).   DOI
25 Bornstein, R. D., and D. S. Johnson, 1977: Urban-rural wind velocity difference. Atmos. Environ., 11, 597-604, doi:10.1016/0004-6981(77)90112-3.   DOI
26 Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Lay. Meteorol., 101, 329-358, doi:10.1023/A:1019207923078.   DOI
27 Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.   DOI
28 Fortuniak, K., K. Klysik, and J. Wibig, 2006: Urban-rural contrasts of meteorological parameters in Lodz. Theor. Appl. Climatol., 84, 91-101, doi:10.1007/s00704-005-0147-y.   DOI
29 Han, B.-S., J.-J. Baik, and K.-H. Kwak, 2019: A preliminary study of turbulent coherent structures and ozone air quality in Seoul using the WRF-CMAQ model at 50 m grid spacing. Atmos. Environ., 218, 117012, doi:10.1016/j.atmosenv.2019.117012.   DOI
30 Byon, J.-Y., Y.-J. Choi, and B.-G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul, Atmosphere, 20, 13-26 (in Korean with English abstract).
31 Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784-801, doi:10.1175/JAMC-D-12.0157.1.   DOI
32 Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.   DOI
33 Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.   DOI
34 Lee, S.-H., and S.-T. Kim, 2015: Estimation of anthropogenic heat emission over Sou th Korea u sing a statistical regression method. Asia-Pac. J. Atmos. Sci., 51, 157-166, doi:10.1007/s13143-015-0065-6.   DOI
35 Littlefair, P., 2001: Daylight, sunlight and solar gain in the urban environment. Sol. Energy, 70, 177-185, doi: 10.1016/S0038-092X(00)00099-2.   DOI
36 Marciotto, E. R., A. P. Oliveira, S. R. Hanna, 2010: Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build. Environ., 45, 2497-2505, doi: 10.1016/j.buildenv.2010.05.012.   DOI
37 Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, S. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995-2015. Urban Clim., 4, 1-15, doi:10.1016/j.uclim.2013.03.002.   DOI
38 Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24, doi:10.1002/qj.49710845502.   DOI
39 Schrijvers, P. J. C., H. J. J. Jonker, S. R. de Roode, and S. Kenjeres, 2020: On the daytime micro-climatic conditions inside an idealized 2D urban canyon. Build. Environ., 167, 106427, doi:10.1016/j.buildenv.2019.106427.   DOI
40 Theeuwes, N. E., G. J. Steenveld, R. J. Ronda, B. G. Heusinkyeld, L. W. A. van Hove, and A. A. M. Holtslag, 2014: Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. Soc., 140, 2197-2210, doi:10.1002/qj.2289.   DOI