• 제목/요약/키워드: UPS system

Search Result 489, Processing Time 0.039 seconds

Test on Characteristics of Delta Conversion UPS System (델타변환 무정전전원장치 시스템의 특성 시험)

  • Ji Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.491-496
    • /
    • 2005
  • In this paper, test on characteristics of 3-phase line-interactive UPS system, known as delta conversion UPS system, is studied. Delta conversion UPS system is new line-interactive UPS system using two series-parallel PWM converters instead of using series inductor in conventional single conversion line-interactive UPS system. It is known that the characteristics of input and output in delta conversion UPS system is much improved by controlling source current of AC lines directly. Here the results on load test, normal/backup mode test, and normal/bypass mode test, which are very important in the test on characteristics of UPS system, is presented. And finally overall evaluation on delta conversion UPS system is given.

  • PDF

The Configurations of the large scale UPS system (대규모 무정전 전원공급 시스템의 구성방안)

  • 송언빈;윤병도
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.80-83
    • /
    • 1991
  • The need of UPS (Uninterruptible Power Sup-ply) system is dramatically increasing with the increased use of computers, telecommunica-tion system, building automation system, and office automation system in office buildings. The consequence of the power failure is very disas trous in intelligent office buil-dings. Thus, the nucessity of large scale UPS system with generations of large scale UPS system with generator is increasing. In this study, the configurations of large scale UPS system are reviewed and analyzed. The design guide and technical considerations of high reliability system are presented.

  • PDF

A Study on the UPS System based HF-Link AC to DC Converter (고주파 링크 AC/DC 콘버어터를 이용한 UPS 시스템에 관한 연구)

  • Mo, Chang-Ho;Lee, Su-Weon;Kim, Yeeug-Min;Park, Hyun-Chul;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.437-439
    • /
    • 1996
  • In this paper, an UPS system using high-frequency link AC to DC converter is Proposed. The AC to DC converter has sinusoidal input current and high power factor. In this UPS system, the waveform of the output voltage has smaller harmonic contents than those of a conventional UPS system. In this paper, an operating principle of the system is presented. This new control technique of the UPS system is capable of providing a wide range regulated output DC voltage compared with the conventional UPS system. Performance of the system carried out through theoretical and experimental means.

  • PDF

Voltage Control in a Novel Three-Phase Line Interactive UPS System with Parallel-Series Active Power Line Conditioning Capabilities using AC Line Reactor (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스뎀의 전압제어)

  • Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1072-1077
    • /
    • 2006
  • In this paper a novel 3-phase line interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) is proposed. And the strategy of voltage control in proposed UPS system is explained. The objective of voltage control in parallel(shunt) and series PWM VSC of proposed UPS system is to guarantee satisfactory characteristics in steady state and transient state.

  • PDF

Design and Implementation UPS Management System in HFC Network (HFC 전송망을 이용한 UPS 원격관리 시스템의 설계와 구현)

  • 김영화;강준우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.75-78
    • /
    • 2002
  • Since power failures in high-speed communication network, especially in HFC(Hybrid Fiber Coaxial cable) network are critical, microcontroller-based UPS(Uninterrupted Power Supply) are commonly used in the network. Hardware and software of UPS management system is designed and implemented to monitor and control UPS status to supply electric power to ONU and TBA in the HFC network. The result of laboratory tests and field tess of this system shows the scan rate to be 1 to 10 minutes to sufficiently monitor the status of UPS in the network.

  • PDF

Cost-Effective APF/UPS System with Seamless Mode Transfer

  • Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.195-204
    • /
    • 2015
  • In this paper, the development of a cost-effective active power filter/uninterruptible power supply (APF/UPS) system with seamless mode transfer is described. The proposed scheme employs a pulse-width-modulation (PWM) voltage-source inverter and has two operational modes. First, when the source voltage is normal, the system operates as an APF, which compensates for the harmonics and power factor while boosting the DC-link voltage to be ready for the disturbance, without an additional DC charging circuit. A simple algorithm to detect the load current harmonics is also proposed. Second, when the source voltage is out of the normal range (owing to sag, swell, or outage), it operates a UPS, which controls the output voltage constantly by discharging the DC-link capacitor. Furthermore, a seamless transfer method for the single-phase inverter between the APF mode and the UPS mode is also proposed, in which an IGBT switch with diodes is used as a static bypass switch. Dissimilar to a conventional SCR switch, the IGBT switch can implement a seamless mode transfer. During the UPS operation, when the source voltage returns to the normal range, the system operates as an APF. The proposed system has good transient and steady-state response characteristics. The APF, charging circuit, and UPS systems are implemented in one inverter system. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype APF/UPS system rated at 3 kVA.

Improvement of Naval Combat System UPS under Abnormal Transients (비정상 과도상태에서의 해군 전투체계 UPS 개선)

  • Kim, Sung-Who;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.97-103
    • /
    • 2018
  • This paper addresses an improved naval combat UPS(Uninterruptable Power Supply) system under abnormal transients. Previously, thermistor and varistor elements were used to cope with transient overvoltage and overcurrent, however the UPS was frequently unavailable because it was vulnerable to abnormal transient voltage generated during system operation. In order to overcome this problem and protect UPS system, this paper proposes an input power cut-off circuit that detects the initial input power and abnormal transient voltage generated during operation, improvement of power control sequence, and a method to prevent malfunction of an inverter and CPU. The UPS system implementing the proposed method was simulated by input power variable test using programmable AC/DC generator, and finally validated its reliability and stability through field tests by mounting on multifunctional console of naval combat system.

Gird-interactive Current Controlled Voltage Source Inverter System with UPS (UPS를 고려한 계통연계 전류제어형 전압원 인버터)

  • Ko, Sung-Hun;Lim, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1064-1070
    • /
    • 2007
  • This paper presents a grid-interactive current controlled voltage source inverter (CCVSI) with uniterruptible power supply (UPS), which uses an inner current control loop (polarized ramp time (PRT)) and outer feedback control loops to improve grid power quality and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, a single stage CCVSI is used. The operation of this system could be divided into the power quality control (PQC) state mode and the UPS state mode. In PQC mode, the system operated to compensate the reactive power demand by nonlinear load or variation in load. In UPS mode. the system is controlled to provide a sinusoidal voltage at the rated value for the load when the gird fail. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1KVA load capacity is presented.

Inrush Current Elimination for a Three-Phase Off-Line UPS System (3상 오프라인 무정전 전원 시스템의 돌입전류 제거)

  • Bukhari, Syed Sabir Hussain;Kwon, Byung-il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.944-945
    • /
    • 2015
  • Many sensitive loads always rely on UPS systems to maintain continuous power during abnormal utility power conditions. As any disturbance occurs at the utility side, an off-line UPS system takes over the load within a quarter cycle to avoid a blackout. However, the starting of the inverter can root the momentous inrush current for the transformer installed before the load, due to its magnetic saturation. The consequences of this current can be a reduction of line voltage and tripping of protective devices of the UPS system. Furthermore, it can also damage the transformer and decrease its lifetime by increasing the mechanical stresses on its windings. To prevent the inrush current, and to avoid its disruptive effects, this paper proposes an off-line UPS system that eliminates the inrush current phenomenon while powering the transformer coupled loads, using a current regulated voltage source inverter (CRVSI) instead of a typical voltage source inverter (VSI). Simulations have been performed to validate the operation of proposed off-line UPS system.

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Choi Y.K.;Ko T.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.987-993
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Furthermore, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristic.

  • PDF