• Title/Summary/Keyword: UCP1

Search Result 147, Processing Time 0.025 seconds

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Effects of maternal undernutrition during late pregnancy on the regulatory factors involved in growth and development in ovine fetal perirenal brown adipose tissue

  • Yang, Huan;Ma, Chi;Zi, Yang;Zhang, Min;Liu, Yingchun;Wu, Kaifeng;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1010-1020
    • /
    • 2022
  • Objective: The experiment was conducted to evaluate the effects of maternal undernutrition during late pregnancy on the expressions of genes involved in growth and development in ovine fetal perirenal brown adipose tissue (BAT). Methods: Eighteen ewes with singleton fetuses were allocated to three groups at day 90 of pregnancy: restricted group 1 (RG1, 0.33 MJ metabolisable energy [ME]/kg body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.18 MJ ME/kg BW0.75/d, n = 6), and a control group (CG, ad libitum, 0.67 MJ ME/kg BW0.75/d, n = 6). The fetuses were removed at day 140 of pregnancy. All data were analyzed by using the analysis of variance procedure. Results: The perirenal fat weight (p = 0.0077) and perirenal fat growth rate (p = 0.0074) were reduced in RG2 compared to CG. In fetal perirenal BAT, the protein level of uncoupling protein 1 (UCP1) (p = 0.0001) was lower in RG1 and RG2 compared with CG and UCP1 mRNA expression (p = 0.0265) was decreased in RG2. The protein level of myogenic factor 5 (Myf5) was also decreased in RG2 (p = 0.0001). In addition, mRNA expressions of CyclinA (p = 0.0109), CyclinB (p = 0.0019), CyclinD (p = 0.0015), cyclin-dependent kinase 1 (CDK1) (p = 0.0001), E2F transcription factor 1 (E2F1) (p = 0.0323), E2F4 (p = 0.0101), and E2F5 (p = 0.0018) were lower in RG1 and RG2. There were decreased protein expression of peroxisome proliferator-activated receptor-γ (PPARγ) (p = 0.0043) and mRNA expression of CCAAT/enhancer-binding protein-α (C/EBPα) (p = 0.0307) in RG2 and decreased PPARγ mRNA expression (p = 0.0008) and C/EBPα protein expression (p = 0.0015) in both RG2 and RG1. Furthermore, mRNA expression of bone morphogenetic protein 4 (BMP4) (p = 0.0083) and BMP7 (p = 0.0330) decreased in RG2 and peroxisome proliferator-activated receptor co-activator-1α (PGC-1α) reduced in RG2 and RG1. Conclusion: Our observations support that repression of regulatory factors promoting differentiation and development results in the inhibition of BAT maturation in fetal perirenal fat during late pregnancy with maternal undernutrition.

Anti-Obesity Effects of Imyo-san on High Fat Diet Induced Obese Mice (고지방식이 유도 비만쥐에서 이묘산의 항비만 효과)

  • Kang, Seok-Beom;Shon, Woo-Seok;Kim, Young-Jun;Woo, Chang-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.2
    • /
    • pp.19-36
    • /
    • 2022
  • Objectives This study is to investigate the effects and mechanisms of Imyo-san (IMS) on the obese mice model induced by high-fat diet. Methods Antioxidative capacity was measured by in vitro method. C57BL/6 mice were randomly assigned into 5 groups (n=7). Normal group was fed general diet (Normal). The other 4 groups were fed high fat diet (HFD) with water (Control), with Garcinia gummi-gutta (GG, Garcinia gummi-gutta 200 mg/kg), with low-dose IMS (IMSL, Imyo-san 0.54 g/kg) and with high-dose IMS (IMSH, Imyo-san 1.08 g/kg). Results IMS showed high radical scavenging activity. After 6 week experiment, body weight, food intake, food efficiency ratio (FER), epididymal fat and liver weight, triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, very low density lipoprotein (VLDL) cholesterol, sterol regulatory element-binding protein-1 (SREBP-1), phospho-acetyl-CoA carboxylase (p-ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), SREBP-2, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), phospho-liver kinase B1 (p-LKB1), phospho-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor 𝛼 (PPAR𝛼), peroxisome proliferator-activated receptor 𝛾 coactivator-1𝛼 (PGC-1𝛼), uncoupling protein-2 (UCP-2), carnitine palmitoyltransferase 1A (CPT-1A), and histology of liver and epididymal fat were measured and analysed. Body weight gain, FER, liver and epididymal fat weight of IMS groups were significantly decreased. There were significant improvements in blood lipids with less TG, TC, LDL-cholesterol, VLDL-cholesterol and more HDL-cholesterol. Proteins associated with lipid synthesis (SREBP-1, p-ACC, FAS, SCD-1) and cholesterol (SREBP-2, HMGCR) was improved. Factors regulating lipid synthesis and lipid catabolism (p-LKBI, p-AMPK, PPARα, PGC-1α, UCP-2, CPT-1A) were increased. In histological examinations, IMS group had smaller fat droplets than control group. All results increased depending on concentration. Conclusions It can be suggested that IMS has anti-obesity effects with improving lipid metabolism.

Ethyl acetate fraction of GGEx18 modulates fatty acid β-oxidizing enzymes (In vitro 동물세포에서 GGEx18의 ethyl acetate 분획물에 의한 지방산 β-산화효소 유전자 발현의 조절)

  • Joo, Byung-Soo;Lee, Hee-Young;Lee, Hye-Rim;Yoon, Mi-Chung;Seo, Bu-Il;Kim, Beom-Hoi;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2012
  • Objectives : This study was undertaken to investigate the effects of the GGEx18 ethyl acetate fraction (EF) on lipid accumulation and gene expression of fatty acid-oxidizing enzymes using 3T3-L1 adipocytes, C2C12 skeletal muscle cells, and NMu2Li liver cells. Methods : PPAR${\alpha}$, AMPK and UCPs transactivation was examined in NMu2Li hepatocytes, C2C12 myocytes, and 3T3-L1 preadipocytes using transient transfection assays. Results : 1. Compared with control, EF significantly increased the mRNA expression of VLCAD in 3T3-L1 adipocytes. 2. Compared with control, EF (0.1 ${\mu}g/ml$) significantly inhibited lipid accumulation in 3T3-L1 adipocytes. 3. EF significantly increased the mRNA expression of AMPK${\alpha}$1, AMPK${\alpha}$2 and PPAR${\alpha}$ in C2C12 skeletal muscle cells compared with control. 4. EF significantly increased the mRNA expression of genes involved in fatty acid ${\beta}$-oxidation, such as thiolase, MCAD, and CPT-1 in C2C12 skeletal muscle cells compared with control. 5. EF significantly increased the mRNA expression of UCP2 involved in energy expenditure in C2C12 skeletal muscle cells compared with control. 6. Compared with control, EF (10 ${\mu}g/ml$) significantly inhibited lipid accumulation in C2C12 skeletal muscle cells. 7. EF (10 ${\mu}g/ml$) significantly increased the mRNA expression of ACOX, HD, VLCAD and MCAD in NMu2Li liver cells compared with control. Conclusions : These results suggest that EF may prevent obesity by increasing the mRNA expression of mitochondrial fatty acid ${\beta}$-oxidizing enzymes in 3T3-L1 adipocytes, by not only regulating the fatty acid oxidation through activation of AMPK and PPAR${\alpha}$, but also increasing the UCP2 mRNA expression in C2C12 skeletal muscle cells, and by stimulating the mRNA expression of fatty acid-oxidizing enzymes in NMu2Li liver cells.

Identification of the Differentially Expressed Genes of Hanwoo During the Growth Stage by Subtractive cDNA Hybridization (Subtraction 기법을 이용한 한우 성장 단계 특이 발현 유전자 탐색)

  • Jang, Y.S.;Kim, T.H.;Yoon, D.H.;Park, E.W.;Cheong, I.C.;Jo, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.13-22
    • /
    • 2002
  • To identify the differentially expressed genes at growth stage of Hanwoo, we constructed the subtractive cDNA library from loin mRNA of 12- and 24-month old Hanwoo by PCR-based subtraction. The fourteen genes were confirmed by sequencing and reverse northern blot analysis, and they were selected as candidate of putative genes differentially expressed at the growth stage of Hanwoo. Three subtracted cDNA fragments that expressed specific signal to cDNA probe for 6-month-old loin of Hanwoo were highly homologous to those of the genes encoding EPV 20, Ca2+ATPase, and TCTP, respectively. The nine cDNA clones showed intense signal to cDNA probe from 12-month-old loin of Hanwoo, and highly homologus to those of genes encoding VCP, HSP 70, aldolase A, MSSK1, GM-2 activator protein, ryanodine receptor, acidic ribosomal phosphoprotein p1, ADP/ATP translocase, and UCP 2, respectively. Two subtracted cDNA clones that expressed specific signal to cDNA probes for 12- and 24-month-old loin of Hanwoo were detected. One of them was highly homologus to the gene encoding ferrochelatase and the other was highly homologus to the gene encoding ADRP.

High-fat diet alters the thermogenic gene expression to β-agonists or 18-carbon fatty acids in adipocytes derived from the white and brown adipose tissue of mice

  • Seonjeong Park;Seung A Ock;Yun Jeong Park;Yoo-Hyun Lee;Chan Yoon Park;Sunhye Shin
    • Journal of Nutrition and Health
    • /
    • v.57 no.2
    • /
    • pp.171-184
    • /
    • 2024
  • Purpose: Although activating thermogenic adipocytes is a promising strategy to reduce the risk of obesity and related metabolic disorders, emerging evidence suggests that it is difficult to induce adipocyte thermogenesis in obesity. Therefore, this study aimed to investigate the regulation of adipocyte thermogenesis in diet-induced obesity. Methods: Adipose progenitor cells were isolated from the white and brown adipose tissues of control diet (CD) or high-fat diet (HFD) fed mice, and fully differentiated white and brown adipocytes were treated with β-agonists or 18-carbon fatty acids for β-adrenergic activation or peroxisome proliferator-activated receptor (PPAR) activation. Results: Compared to the CD-fed mice, the expression of uncoupling protein 1 (Ucp1) was lower in the white adipose tissue of the HFD-fed mice; however, this was not observed in the brown adipose tissue. The expression of peroxisome proliferator-activated receptor gamma (Pparg) was lower in the brown adipose progenitor cells isolated from HFD-fed mice than in those isolated from the CD-fed mice. Norepinephrine (NE) treatment exerted lesser effect on peroxisome proliferator-activated receptor-γ coactivator (Pgc1a) upregulation in white adipocytes derived from HFD-fed mice than those derived from CD-fed mice. Regardless which 18-carbon fatty acids were treated, the expression levels of thermogenic genes including Ucp1, Pgc1a, and positive regulatory domain zinc finger region protein 16 (Prdm16) were higher in the white adipocytes derived from HFD-fed mice. Oleic acid (OLA) and γ-linolenic acid (GLA) upregulated Pgc1a expression in white adipocytes derived from HFD-fed mice. Brown adipocytes derived from HFD-fed mice had higher expression levels of Pgc1a and Prdm16 compared to their counterparts. Conclusion: These results indicate that diet-induced obesity may downregulate brown adipogenesis and NE-induced thermogenesis in white adipocytes. Also, HFD feeding may induce thermogenic gene expression in white and brown primary adipocytes, and OLA and GLA could augment the expression levels.

Anti-obesity Effects of Wolbi-tang(越婢湯) on the Obese-mice Induced by High-fat Diet (월비탕(越婢湯)이 고지방식이(高脂肪食餌)로 유도된 비만 생쥐에 미치는 영향)

  • Park, Ji-Hyun;Hong, Seo-Young
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.31-48
    • /
    • 2011
  • Objectives : In order to investigate the anti-obesity effects of Wolbi-tang(here in after referred to WBT) on the obese gene and obese inhibitory, C57BL/6 mice were induced by high-fat diet. Methods : C57BL/6 mice were divided into 5 groups(normal, only high-fat diet, high-fat diet with Reductil, high-fat diet with WBT 400, 200 mg/kg extract) and fed for 5 weeks. And observed body weight change, total cholesterol, low density lipoprotein cholesterol(LDL-cholesterol), high density lipoprotein cholesterol (HDL-cholesterol), triglyceride, glucose, leptin change, alanine transaminase(ALT), aspartate transaminase(AST), serum creatinine, the expression of ${\beta}3$-adrenergic receptor(${\beta}3AR$), leptin, uncoupling protein(UCP2) gene in 3T3-L1 adipocyte, 3T3-L1 adipocyte proliferation, histological analysis of adipose tissue and liver tissue. Results : 1. Refer to cell cytotoxicity, viability of human fibroblast cells(hFCs) showed not significant changes. 2. The amount of ALT, AST was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. The amount of creatinine showed not significant changes. 3. Body weight was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 4. The amount of total cholesterol and triglyceride was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. LDL-cholesterol was decreased and HDL-cholesterol was increased significantly in WBT 400 mg/kg groups. 5. The amount of glucose was decreased significantly in WBT 400 mg/kg groups. 6. The amount of serum leptin was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 7. The revelation of ${\beta}3AR$ in 3T3-L1 adipocyte was increased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of leptin was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of UCP2 was decreased significantly in WBT $100{\mu}g/ml$ group. 8. 3T3-L1 adipocyte proliferation was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The size of adipocyte was decreased relative to the control group in WBT 400 mg/kg group. 9. The adipose vacuoles in liver tissue was decreased relative to the control group. Conclusions : These results suggested that WBT has inhibitory effects of obesity. WBT might be applicated on treatment of obesity and metabolic syndrome. Further studies analysing its effects were needed.

Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors

  • Kiros Haddish;Jong Won Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1268-1280
    • /
    • 2023
  • Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levelswere also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.

The effects of Allomyrina dichotoma larval extract on palmitate-induced insulin resistance in skeletal muscle cells (장수풍뎅이 유충 추출물이 고지방산 처리 골격근세포의 인슐린 저항성에 미치는 영향)

  • Kim, Kyong;Sim, Mi-Seong;Kwak, Min-Kyu;Jang, Se-Eun;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.462-475
    • /
    • 2022
  • Purpose: Allomyrina dichotoma larvae are one of the approved edible insects with nutritional value and various functional and medicinal properties. Previously we have demonstrated that the Allomyrina dichotoma larval extract (ADLE) ameliorates hepatic insulin resistance in high-fat diet (HFD)-induced diabetic mice through the activation of adenosine monophosphate-activated protein kinase (AMPK). This study investigated the effects of ADLE on insulin resistance in the skeletal muscle and explored mechanisms for enhancing the glucose uptake in palmitate (PAL)-treated C2C12 myotubes. Methods: To induce insulin resistance, the differentiated C2C12 myotubes were treated with PAL (0.5 mM) for 24 hours, and then treated with a 0.5 mg/ml concentration of ADLE, and the resultant effects were measured. The expression levels of glucose transporter-4 (GLUT4), AMPK, and the mitochondrial metabolism-related proteins were analyzed by western blotting. The mRNA expression levels of lipogenesis- related genes were determined by quantitative reverse-transcriptase PCR. Results: The exposure of C2C12 myotubes to 0.5 mg/ml of ADLE increased cell viability significantly compared to PAL-treated cells. ADLE upregulated the protein expression of GLUT4 and enhanced glucose uptake in the PAL-treated cells. ADLE increased the phosphorylated AMPK in both the PAL-treated C2C12 myotubes and HFD-treated skeletal muscle. The reduced expression levels of peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC1α) and uncoupling protein 3 (UCP3) due to the PAL and HFD treatment were reversed by the ADLE treatment. The citrate synthase activity was also significantly increased with the PAL and ADLE co-treatment. Moreover, the mRNA and protein expressions of fatty acid synthesis-related factors were reduced in the PAL and HFD-treated muscle cells, and this effect was significantly attenuated by the ADLE treatment. Conclusion: ADLE activates AMPK, which in turn induces mitochondrial metabolism and reduces fatty acid synthesis in C2C12 myotubes. Therefore, ADLE could be useful for preventing or treating insulin resistance of skeletal muscles in diabetes.