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ABSTRACT
Purpose: Although activating thermogenic adipocytes is a promising strategy to reduce the 
risk of obesity and related metabolic disorders, emerging evidence suggests that it is difficult 
to induce adipocyte thermogenesis in obesity. Therefore, this study aimed to investigate the 
regulation of adipocyte thermogenesis in diet-induced obesity.
Methods: Adipose progenitor cells were isolated from the white and brown adipose tissues 
of control diet (CD) or high-fat diet (HFD) fed mice, and fully differentiated white and brown 
adipocytes were treated with β-agonists or 18-carbon fatty acids for β-adrenergic activation or 
peroxisome proliferator-activated receptor (PPAR) activation.
Results: Compared to the CD-fed mice, the expression of uncoupling protein 1 (Ucp1) was 
lower in the white adipose tissue of the HFD-fed mice; however, this was not observed in the 
brown adipose tissue. The expression of peroxisome proliferator-activated receptor gamma 
(Pparg) was lower in the brown adipose progenitor cells isolated from HFD-fed mice than in 
those isolated from the CD-fed mice. Norepinephrine (NE) treatment exerted lesser effect 
on peroxisome proliferator-activated receptor-γ coactivator (Pgc1a) upregulation in white 
adipocytes derived from HFD-fed mice than those derived from CD-fed mice. Regardless 
which 18-carbon fatty acids were treated, the expression levels of thermogenic genes 
including Ucp1, Pgc1a, and positive regulatory domain zinc finger region protein 16 (Prdm16) 
were higher in the white adipocytes derived from HFD-fed mice. Oleic acid (OLA) and 
γ-linolenic acid (GLA) upregulated Pgc1a expression in white adipocytes derived from HFD-
fed mice. Brown adipocytes derived from HFD-fed mice had higher expression levels of Pgc1a 
and Prdm16 compared to their counterparts.
Conclusion: These results indicate that diet-induced obesity may downregulate brown 
adipogenesis and NE-induced thermogenesis in white adipocytes. Also, HFD feeding may 
induce thermogenic gene expression in white and brown primary adipocytes, and OLA and 
GLA could augment the expression levels.
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INTRODUCTION

Whereas white adipocytes store energy, brown and beige adipocytes generate heat from 
the stored energy. Brown adipocytes express thermogenic genes even in basal conditions; 
however, beige adipocytes are activated under stimulation [1-3]. Therefore, activation of beige 
adipocytes exerts beneficial effects on body composition and metabolic health by increasing 
energy expenditure [4-6].

To induce thermogenesis in beige adipocytes, β-adrenergic signaling should be stimulated 
by β-agonists, such as norepinephrine (NE) and CL316,243 (CL). Under the activation by 
β-agonists, multiple transcription factors, including peroxisome proliferator-activated 
receptor (PPAR), are recruited and upregulate Ucp1 and other thermogenic genes. As PPAR 
agonists, long-chain fatty acids (LCFA) are also able to induce thermogenesis [7-12]. We 
and others have reported that polyunsaturated fatty acids increased adipose thermogenesis 
compared to saturated fatty acids [7-9], and the high n-6:n-3 ratio of diets lowered 
thermogenesis and induced body fat accumulation [10,11].

However, multiple studies have shown that beige adipocytes are hard to be activated in 
obese animals and humans [4,5,13]. This may be because obesity alters the numbers and 
the functions of various kinds of cells found in adipose tissue, including mature adipocytes, 
macrophages, and adipose progenitor cells [14]. Obesity is reported to polarize adipose 
tissue macrophages from anti-inflammatory type to pro-inflammatory type, which increases 
adipose tissue inflammation [15]. Obesity also changes the characteristics of adipose 
progenitor cells, leading to more generation of white adipocytes, less generation of brown 
and beige adipocytes, and more whitening of beige adipocytes [5].

Nevertheless, the thermogenic effects of β-agonists and LCFA on adipocytes derived from 
obese animal models has not been determined yet. Therefore, we conducted this study 
to demonstrate if obesity changes the thermogenic response of primary adipocytes to 
β-agonists and 18-carbon fatty acids. We chose 18-carbon fatty acids as PPAR agonists in this 
study because they are the most common fatty acids found in human diets, such as dietary 
fats and oils, meat, and nuts, and have multiple isomers in terms of the number and the 
position of double bonds [9,10].

METHODS

Animals and diets
Four-week-old C57BL/6 male mice were fed a control diet (CD; 11% kcal fat; D132; SAFE 
Complete Care Competence, Rosenberg, Germany) or a high-fat diet (HFD; 60% kcal fat; 
D12492; Research diets, New Brunswick, NJ, USA) for 16 weeks (Fig. 1A). Table 1 shows the 
composition of the experimental diets. At the end of the experimental period, the mice were 
euthanized, and white adipose tissue (WAT) and brown adipose tissue (BAT) were dissected. 
All animal procedures were approved and carried out in accordance with the Institutional 
Animal Care and Use Committee of the University of Suwon (No. USW-IACUC-2021-004).

Stromal vascular cell (SVC) isolation and differentiation
SVCs, containing adipose progenitor cells, were isolated from the inguinal subcutaneous 
WAT and BAT of the experimental mice, and grown in Dulbecco’s modified Eagle’s medium/
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F12 (DMEM/F12; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal 
bovine serum (FBS; Corning Inc., Corning, NY, USA) and 1% penicillin and streptomycin 
(Sigma-Aldrich) at 37°C and 5% CO2. Two days after confluence, cell differentiation was 
initiated with DMEM/F12 with 10% FBS, 1.7 μM insulin, 1 μM dexamethasone, 500 μM 
isobutylmethylxanthine, 1μM rosiglitazone, 17 μM pantothenic acid, and 33 μM biotin for 6 
days (Fig. 1B and C).

β-agonist treatment
To induce thermogenesis by stimulating β-adrenergic signaling, 10 μM of NE (a non-selective 
β-adrenergic receptor agonist) or CL (a specific β3-adrenergic receptor agonist) was treated 
for 4 hours on day 6 of differentiation (Fig. 1B).
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Fig. 1. Experimental design. 
(A) C57BL/6 mice were fed CD or HFD for 16 weeks. (B, C) Isolated stromal vascular fraction from WAT and BAT 
of the mice were cultured and differentiated into mature adipocytes. Mature adipocytes were treated with (B) 
β-agonists for 4 hours or (C) 18-carbon fatty acids for 24 hours. 
CD, control diet; HFD, high-fat diet; WAT, white adipose tissue; BAT, brown adipose tissue; SVC, stromal vascular cell.

Table 1. Composition of the experimental diets
Ingredients Control diet1) High-fat diet2)

g (%) Kcal (%) g (%) Kcal (%)
Carbohydrate 55.4 67 26.4 20
Protein 18.6 22 26.2 20
Fat 4.1 11 34.93) 60
Kcal/g 3.33 5.24
1)D132, SAFE Complete Care Competence, Rosenberg, Germany.
2)D12492, Research diets, New Brunswick, NJ, USA.
3)Lard 245.00 g and soybean oil 25.00 g in the total 773.85 g of diet.



Fatty acid preparation
Eighteen carbon fatty acids, including stearic acid (STA; 18:0), oleic acid (OLA; 18:1, ∆9), 
linoleic acid (LNA; 18:2, ∆9,12), α-linolenic acid (ALA; 18:3, ∆9,12,15), γ-linolenic acid (GLA; 
18:3, ∆6,9,12), and pinolenic acid (PLA; 18:3, ∆5,9,12; Cayman, Ann Arbor, MI, USA), were 
completely dissolved in 0.9% NaCl solution. Each solution was mixed with 20% bovine 
serum albumin (BSA) in 0.9% NaCl to make the final concentration of the fatty acids to 5 
mM, and sterilized through a 0.2 µm syringe filter. To determine thermogenic effects of the 
fatty acids on mature adipocytes, fully differentiated SVC were treated with 50 µM of the fatty 
acids for 24 hours bound to BSA on day 6 of differentiation (Fig. 1C).

Quantitative real-time polymerase chain reaction (PCR)
Total RNA was extracted from the cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA), 
and cDNA was synthesized from 1 μg of total RNA using the PrimeScript II 1st strand cDNA 
synthesis kit (Takara, Tokyo, Japan). The mRNA levels of Cebpb, Cebpa, Pparg, Ucp1, Pgc1a, and 
Prdm16 were quantified using SYBR Green PCR Master Mix (Applied Biosystems, Waltham, 
MA, USA) by StepOnePlus Real-time PCR System (Applied Biosystems). The mRNA levels 
were normalized relative to 18S rRNA, and fold changes of gene expression were calculated by 
the ΔΔCt method. Specific primer sequences used are shown in Table 2.

Statistical analysis
Student’s t-test or two-way analysis of variance with Duncan’s post-hoc test was performed 
to determine significant differences among groups. Differences were considered statistically 
significant at p < 0.05. Data were presented as means ± SEM, and analyzed using SPSS 
version 24 (SPSS Inc., Chicago, IL, USA).

RESULTS

Body and tissue weight
HFD-fed mice had significantly higher body weight (1.47-fold), weight gain (2.46-fold), and 
WAT (3.60-fold) and BAT (1.84-fold) mass compared to CD-fed mice (Table 3), indicating 
that HFD feeding successfully induced obese phenotype in the mice.

Thermogenic gene expression in adipose tissues
To determine if HFD feeding alters thermogenic gene expression in whole adipose tissues, 
Ucp1, Pgc1a, and Prdm16 expression levels were measured in WAT and BAT (Fig. 2). HFD-fed 
mice had significantly lower Ucp1 expression and tended to have lower Pgc1a expression in 
WAT, but there was no difference in the expression of the genes in BAT. These data suggest 
that HFD may downregulate thermogenesis in WAT but not in BAT.

174https://doi.org/10.4163/jnh.2024.57.2.171

HFD alters thermogenesis of primary adipocytes

https://e-jnh.org

Table 2. Primer sequences used for quantitative real-time polymerase chain reaction
Genes Forward primer Reverse primer
18S ATC CCT GAG AAG TTC CAG CA CCT CTT GGT GAG GTC GAT GT
Cebpb TTG ATG CAA TCC GGA TCA AAC G CAG TTA CAC GTG TGT TGC GTC
Cebpa AAT GGC AGT GTG CAC GTC TA CCC CAG CCG TTA GTG AAG AG
Pparg TTG ACC CAG AGC ATG GTG C GAA GTT GGT GGG CCA GAA TG
Ucp1 GGG CCC TTG TAA ACA ACA AA GTC GGT CCT TCC TTG GTG TA
Pgc1a GTC CTT CCT CCA TGC CTG AC GTG TGG TTT GCT GCA TGG TT
Prdm16 GGC TCA AGG AGG AGG AGA GA AGG TCC GGG TCA GGT TCA TA
18S, 18S ribosomal RNA; Cebpb, CCAAT enhancer binding protein beta; Cebpa, CCAAT enhancer binding protein 
alpha; Pparg, Peroxisome proliferator-activated receptor gamma; Ucp1, Uncoupling protein 1; Pgc1a, Peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha; Prdm16, PR domain containing 16.
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Table 3. Body and tissue weight of the mice fed experimental diets1)

Variables Control diet High-fat diet Fold changes p-value
Body weight at 4 wks (g) 19.78 ± 0.29 20.08 ± 0.32 1.02 0.512
Body weight at 20 wks (g) 28.98 ± 0.80 42.67 ± 2.18* 1.47 < 0.001
Body weight gain (g) 9.19 ± 0.84 22.59 ± 2.22* 2.46 < 0.001
WAT2) (%) 3.32 ± 0.27 11.96 ± 0.73* 3.60 < 0.001
BAT (%) 0.45 ± 0.03 0.83 ± 0.07* 1.84 < 0.001
Data are presented as means ± SEM (n = 6 for each group). Asterisks indicate significant differences at p < 0.05.
WAT, white adipose tissue; BAT, brown adipose tissue.
1)Four-week-old C57BL/6 mice were fed control (11% kcal fat) or high-fat (60% kcal fat) diets for 16 weeks.
2)WAT includes inguinal subcutaneous, epididymal, perirenal, and retroperitoneal WAT.
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Fig. 2. Effects of HFD on thermogenic gene expression in WAT and BAT. 
Ucp1, Pgc1a, and Prdm16 expression in WAT (A-C) and BAT (D-F). Thermogenic gene expression was determined 
by quantitative real-time polymerase chain reaction with normalization relative to 18S rRNA. Data are presented 
as means ± SEM (n = 6). Asterisks indicate significant differences at p < 0.05 by Student’s t-test. 
CD, control diet; HFD, high-fat diet; WAT, white adipose tissue; BAT, brown adipose tissue.



Adipogenic capability of SVCs
To determine if HFD feeding alters adipogenic capability of adipose progenitor cells, Cebpb, 
Cebpa, and Pparg mRNA expression of SVC isolated from WAT and BAT of CD- or HFD-fed mice 
was measured (Fig. 3). While HFD feeding tended to upregulate Pparg expression in WAT-derived 
SVC, it significantly downregulated Pparg expression in BAT-derived SVC. These data suggest that 
HFD-induced obesity may increase white adipogenesis but decrease brown adipogenesis.

Response of fully differentiated adipocytes to β-agonists
To determine if HFD feeding alters thermogenic response of adipocytes under β-adrenergic 
stimulation, β-agonists, including NE and CL, were treated on fully differentiated 
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Fig. 3. Effects of HFD on adipogenic capability of SVCs. 
Cebpb, Cebpa, and Pparg expression in SVCs isolated from WAT (A-C) and BAT (D-F). SVCs were isolated from 
subcutaneous WAT or BAT. Adipogenic gene expression mRNA expression was determined by quantitative real-
time polymerase chain reaction with normalization relative to 18S rRNA. Data are presented as means ± SEM (n = 
3). Asterisks indicate significant differences at p < 0.05 by Student’s t-test. 
SVC, stromal vascular cell; CD, control diet; HFD, high-fat diet; WAT, white adipose tissue; BAT, brown adipose 
tissue.



subcutaneous WAT and BAT derived adipocytes, and thermogenic gene expression was 
measured (Fig. 4).

In white adipocytes, both NE and CL upregulated Ucp1 mRNA expression regardless of the 
experimental diets fed to mice. However, NE increased Pgc1a mRNA expression only in 
white adipocytes derived from CD-fed mice. Both NE and CL downregulated Prdm16 mRNA 
expression, but the degree of downregulation induced by NE was greater in white adipocytes 
derived from HFD-fed mice compared to those derived from CD-fed mice.

HFD feeding had no effect on the thermogenic response of brown adipocytes. By both NE 
and CL, Ucp1 and Pgc1a mRNA expression were upregulated, but Prdm16 mRNA expression 
was not altered by β-agonist treatment.
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Fig. 4. Effects of HFD on thermogenic response of fully differentiated adipocytes to β-adrenergic agonists. 
Ucp1, Pgc1a, and Prdm16 expression in white (A-C) and brown adipocytes (D-F). Fully differentiated adipocytes were treated with 10 μM of NE or 10 μM of CL for 
4 hours. Thermogenic gene expression was determined by quantitative real-time polymerase chain reaction with normalization relative to 18S rRNA. Data are 
presented as means ± SEM (n = 3). Different superscripts (a-c) indicate significant differences at p < 0.05 by two-way analysis of variance with Duncan’s multiple 
comparison test. If a group has a common superscript with another group, it means they are not statistically different. 
CD, control diet; HFD, high-fat diet; Veh, vehicle; NE, norepinephrine; CL, CL316,243; Diet, diet effect; Trt, β-agonist treatment effect; Diet*Trt, interaction effect.



Response of fully differentiated adipocytes to 18-carbon fatty acids
To determine if HFD feeding changes the thermogenic response of adipocytes under PPAR 
activation, 18-carbon fatty acids with the different number and the position of double 
bonds, including STA, OLA, LNA, ALA, GLA, and PLA, were treated on fully differentiated 
subcutaneous WAT and BAT derived adipocytes, and thermogenic gene expression was 
measured (Figs. 5 and 6).

HFD feeding was shown to upregulate Ucp1 and Prdm16 mRNA expression levels in white 
adipocytes compared to CD. In white primary adipocytes derived from HFD-fed mice, 
Ucp1 mRNA expression was lowered by STA, OLA, LNA, GLA, and PLA, and OLA and GLA 
induced Pgc1a mRNA expression (Fig. 5).

OLA upregulated Ucp1 mRNA expression in brown adipocytes derived from CD-fed mice, but 
not in those derived from HFD-fed mice. Brown adipocytes derived from HFD-fed mice had 
higher Pgc1a and Prdm16 mRNA expression than those derived from CD-fed mice, but there 
was no effect of fatty acids on the expression of the genes (Fig. 6).

DISCUSSION

Although it has been reported that adipose thermogenesis is reduced in obesity [5], the effects of 
obesity on thermogenic response of adipocytes to β-adrenergic stimulation and PPAR activation 
are still not clear. Therefore, we aimed to examine the effects of β-agonists and 18-carbon fatty 
acids on primary white and brown adipocytes derived from HFD-induced obese mice.

In this study, Ucp1 mRNA expression was downregulated by HFD feeding in WAT, but not in 
BAT. This is consistent with our previous study, in which diet-induced obesity did not induce 
the difference in the Ucp1 expression in BAT, but Ucp1 level in WAT was negatively correlated with 
body adiposity [10]. The lower Ucp1 expression in WAT could be due to hypertrophic adipocytes, 
the main cell type found in WAT of obese mice. Diet-induced obesity promotes excessive white 
fat accumulation by hypertrophy as well as hyperplasia, and hypertrophic adipocytes secrete 
proinflammatory cytokines and have very low thermogenic function [16,17].

HFD also divergently modulated adipogenic capability of SVC isolated from WAT and BAT 
of mice by altering Pparg expression. Pparg plays a key role in the regulation of adipogenesis, 
and its target genes promote lipid accumulation in adipocytes during the terminal stage of 
differentiation [18]. Whereas HFD enhanced Pparg expression in SVC from WAT, it reduced 
the gene expression in those from BAT. This is consistent with previous reports showing that 
HFD feeding induces white adipogenesis [10,19,20] and inhibits brown adipogenesis [5]. The 
increase of BAT mass in HFD-fed mice is considered due to whitening of BAT, which impairs 
thermogenic function of BAT [21].

In white adipocytes derived from both CD- and HFD-fed mice, Ucp1 mRNA expression was 
upregulated by NE and CL treatment. However, Pgc1a mRNA expression was not induced 
by neither NE nor CL in HFD-fed mice-derived white adipocytes although NE induced the 
gene more than 5-fold in CD-fed mice-derived cells. This indicates that HFD feeding could 
suppress adipose thermogenic response to β-adrenergic stimulation, and consistently, it has 
been reported that Pgc1a expression was lower and not upregulated by NE injection in visceral 
WAT of HFD-fed mice compared to low-fat diet-fed mice [10].
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Fig. 5. Effects of HFD on thermogenic response of fully differentiated white adipocytes to 18-carbon fatty acids. 
(A) Ucp1, (B) Pgc1a, and (C) Prdm16. Fully differentiated subcutaneous white adipose tissue derived adipocytes were treated with 50 μM of each fatty acid or BSA 
for 24 hours. Thermogenic gene expression was determined by quantitative real-time polymerase chain reaction with normalization relative to 18S rRNA. Data are 
presented as means ± SEM (n = 3). Different superscripts (a, b) indicate significant differences at p < 0.05 by two-way analysis of variance with Duncan’s multiple 
comparison test. If a group has a common superscript with another group, it means they are not statistically different. 
CD, control diet; HFD, high-fat diet; BSA, bovine serum albumin; STA, stearic acid; OLA, oleic acid; LNA, linoleic acid; ALA, α-linolenic acid; GLA, γ-linolenic 
acid; PLA, pinolenic acid; Diet, diet effect; FA, 18-carbon fatty acid effect; Diet*Trt, interaction effect.
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Prdm16 mRNA expression was downregulated by both NE and CL in white adipocytes 
regardless of diets fed to mice. The downregulation of Prdm16 is considered as negative 
feedback because adrenergic receptor desensitization occurs under β-agonist treatment 
to prevent an overstimulation of the signaling [22-24]. It is also thought that the negative 
feedback downregulated the expression of Prdm16, but not Pgc1a, since PRDM16 is activated 
earlier than PGC-1α in the β-adrenergic signaling pathway [25,26].

The basal level of Ucp1 expression, without β-adrenergic stimulation, in white adipocytes 
derived from HFD-fed mice was higher than those derived from CD-fed mice although it was 
not statistically significant. Under the HFD, mice use fat as a main source of energy, which is 
demonstrated by the lower value of respiratory quotient (RQ) [10,27]. Since the RQ of glucose 
is 1 and that of fatty acids is close to 0.7, mice fed with HFD have lower RQ than those fed 
with a low-fat diet [10,27]. Since using fat as an energy source increases the systemic level of 
non-esterified fatty acids, genes related to fatty acid oxidation, such as Ppara and Pgc1a, are 
upregulated [10,19,20], and the proteins encoded by these genes upregulate thermogenic 
gene expression as transcription factors [28].

In white adipocytes, ALA treatment preserved HFD-induced Ucp1 upregulation while other 
18-carbon fatty acids suppressed the gene expression. Omega-3 fatty acids are known to 
stimulate thermogenic activity through multiple mechanisms [5]. Eicosapentaenoic acid 
(EPA) or docosahexaenoic acid (DHA), which can be synthesized from ALA in the body, have 
been reported to activate PPAR [29,30], free fatty acid receptor 4 [31], and transient receptor 
potential vanilloid 1 [32] and to inhibit pattern recognition receptors activation [33] and pro-
inflammatory eicosanoid formation [34]. In mice and rats, fish oil rich in EPA and DHA was 
shown to increase oxygen consumption rate and rectal temperature, which was accompanied 
with upregulation of adipose thermogenesis [31,32,35].

OLA and GLA upregulated Pgc1a expression in white adipocytes derived from HFD-fed mice. 
OLA has been reported to increase cAMP concentration and activate PKA, leading to PGC-1α 
activation [36], and multiple studies have reported the thermogenic effect of olive oil (OLA-
rich oil) in animal models and human subjects. Compared to other 18-carbon fatty acid-rich 
oils, olive oil feeding was shown to increase BAT mass [20] and hypothalamic Lepr expression, 
which could promote thermogenesis [37], and lower body fat accumulation accompanied 
with the higher oxygen consumption rate in mice [10]. Olive oil-fed rats had higher Ucp1, 
Ucp2, and Ucp3 mRNA levels in BAT [38], and healthy normal weight men consumed olive oil 
had higher energy expenditure [39]. Also, it was shown that Ucp1 expression was enhanced by 
GLA in fully differentiated C3T10T1/2 adipocytes [9]. GLA-rich borage oil was also reported 
to upregulate Ucp1 mRNA level in BAT of rats [8] and in subcutaneous WAT of mice [40]. The 
underlying mechanism of GLA is activation of PPARα and PPARγ [41,42]. These data indicate 
that distinct fatty acids with different number and position of double bond exerts divergent 
effects on adipose thermogenesis, and fatty acid composition of dietary fat may regulate the 
risk of obesity and its related metabolic disorders.

In brown adipocytes, no significant effect of diets was observed on thermogenic gene 
expression in response to β-agonists. Both β-agonists upregulated the expression of Ucp1 and 
Pgc1a in the cells regardless of diets fed to mice. Although OLA upregulated Ucp1 expression 
in brown adipocytes derived from CD-fed mice, no effect of OLA was shown in those derived 
from HFD-fed mice. Under the 18-carbon fatty acids or BSA treatment, brown adipocytes 
from HFD-fed mice had significantly higher Pgc1a and Prdm16 expression than those from 
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CD-fed mice, which is consistent with the data of white adipocytes. These data indicate 
that the increased level of fatty acids under HFD feeding could induce thermogenic gene 
expression in both white and brown adipose progenitor cells.

A limitation of this study includes that the adipogenic and thermogenic gene expression 
levels were exclusively measured at the mRNA levels. However, this study still provides the 
significant evidence regarding the response of adipocytes derived from obese animals to 
β-adrenergic stimulation and PPAR activation, and the genes measured in this study have 
been assessed at the protein and phenotype levels in other studies [2,3]. Also, additional 
studies to determine thermogenic effects of short-chain fatty acids (SCFA) on obese 
adipocytes would be advantageous since multiple studies reported the beneficial effects of 
SCFA on body composition and metabolic health [43,44].

SUMMARY

Taken together, HFD feeding suppressed Ucp1 expression in WAT, Pparg expression in SVC 
isolated from BAT, and Pgc1a upregulation under NE treatment in white primary adipocytes. 
HFD challenge was also shown to upregulate the basal level of Ucp1 in white primary 
adipocytes and that of Pgc1a in brown primary adipocytes. These data indicate that diet-
induced obesity suppresses adipose thermogenesis; however, increased fatty acid oxidation 
caused by HFD feeding may promote thermogenic capacity of adipose progenitor cells. Ucp1 
induction by OLA and GLA in white primary adipocytes derived from HFD-fed mice suggests 
that dietary consumption or supplementation of these fatty acids may lead to the activation 
of adipose thermogenesis in obese animals and humans.
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