• Title/Summary/Keyword: U-beam

Search Result 481, Processing Time 0.02 seconds

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Glass Fiber Sheets (유리섬유시트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Kim, Seong-Do;Cho, Baik-Soon;Seong, Jin-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.388-395
    • /
    • 2009
  • To investigate the flexural behavior of RC beams strengthened with glass fiber sheets, 1 control beam and 8 strengthened beams (4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of glass fiber sheets and the existence of U-shaped band, etc. The maximum load was increased by 48% and 34%, and the flexural rigidity by 920% and 880% for NU-beam and U-beam, respectively, compared with those of the control beam. The ductility ratios were 1.43$\sim$2.60 for NU-beam and U-beam. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The experimental and analytical results were well agreed.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates (단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

Effect of Car-Crash at Edge Beam of U-Channel Bridge based on Korean Highway Bridge Specifications and AASHTO LRFD Bridge Design Specifications (도로교 설계기준 및 AASHTO LRFD 설계기준에 근거한 U-채널 교량측보의 차량충돌의 영향)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.490-494
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Although it is effective to reduce additional dead loads, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, it requires behavior analysis and property investigation through the vehicle impact crashing edge beam. This study presents method of structural analysis of U-channel bridge and investigates design specifications for the effect of the edge beam under the vehicle impact. Also, it carries out stability investigation of behavior of edge beam and slab, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification.

  • PDF

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

GLOBAL ATTRACTOR FOR SOME BEAM EQUATION WITH NONLINEAR SOURCE AND DAMPING TERMS

  • Lee, Mi Jin
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.377-385
    • /
    • 2016
  • Global attractor is a basic concept to study the long-time behavior of solutions of the various equations. This paper is investigated with the existence of a global attractor for the beam equation $$u_{tt}+{\Delta}^2u-{\nabla}{\cdot}\{{\sigma}({\mid}{\nabla}u{\mid}^2){\nabla}u\}+f(u)+a(x)g(u_t)=h,$$ using multipliers technique and Nakao's Lemma.

Economic Analysis of Neighborhood Facility using the U-flanged Truss Hybrid Beam (U-플랜지 트러스 복합보를 사용한 근린생활시설의 경제성 분석)

  • Oh, Myoung Ho;Park, Sung Jin;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, In order to apply the U-flanged truss hybrid beam to the actual construction site, the structural design of the basic module of the middle and low-rise neighborhood living facilities was performed according to the Korea Design Standard, and the construction cost and construction period were compared with the traditional reinforced concrete structure system. As a result of analyzing the construction cost for the basic module, if the U-flanged truss hybrid beam and D-Deck slab system are used, the construction cost can be reduced by 86% compared to the traditional reinforced concrete structure system. In addition, as a result of analyzing the construction period for a floor area of 1,000m2, using the U-flanged truss hybrid beam and D-Deck slab system can save 2.0days in construction period compared to the traditional reinforced concrete structure system. Therefore, the U-flange truss hybrid beam can secure sufficient economic feasibility compared to the existing reinforced concrete method in terms of cost reduction and shortening of construction period.

Experimental Study on the Structural Capacity of the U-flanged Truss Hybrid Beam with Hollow Rebars (중공철근으로 보강한 U-플랜지 트러스 복합보의 구조 내력에 관한 실험연구)

  • Lee, Seong Min;Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 2022
  • A typical low and medium-sized neighborhood living facility in reinforced concrete building secures a high floor and pursues an efficient module plan(long span). Accordingly, research on the development of new hybrid beams that can innovatively reduce labor costs such as on-site installation and assembly while securing strength and rigidity is ongoing. In order to verify the structural performance of the U-flanged truss composite beam with newly developed shape, Experiments with various variables are required. Based on the results, this study is to evaluate the strength of U-flanged truss hybrid beam through the flexural strength of the Korea Design Code and experimental values. It was evaluated that nominal flexural strength was 110% to 135% higher than the experimental value.

A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads (충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF