East Asian Math. J.
Vol. 32 (2016), No. 3, pp. 377-385
YNMS
http://dx.doi.org/10.7858/eamj.2016.028

GLOBAL ATTRACTOR FOR SOME BEAM EQUATION WITH NONLINEAR SOURCE AND DAMPING TERMS

Mi Jin Lee

Abstract

Global attractor is a basic concept to study the long-time behavior of solutions of the various equations. This paper is investigated with the existence of a global attractor for the beam equation $$
u_{t t}+\Delta^{2} u-\nabla \cdot\left\{\sigma\left(|\nabla u|^{2}\right) \nabla u\right\}+f(u)+a(x) g\left(u_{t}\right)=h,
$$ using multipliers technique and Nakao's Lemma.

1. Introduction

In this paper, we consider the existence of global attractor for the following beam equation with nonlinear damping and critical nonlinearity:

$$
\begin{align*}
& u_{t t}+\Delta^{2} u-\nabla \cdot\left\{\sigma\left(|\nabla u|^{2}\right) \nabla u\right\}+f(u)+a(x) g\left(u_{t}\right)=h \text { in } \Omega \times \mathbb{R}^{+} \tag{1}\\
& u=0 \text { on } \partial \Omega \times \mathbb{R}^{+}, \tag{2}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \text { in } \Omega, \tag{3}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with a smooth boundary $\partial \Omega, \mathbb{R}^{+}=[0, \infty)$, $\sigma(v)$ is a function like $\sigma(v)=1 / \sqrt{1+v}$ and $a(x)$ is a nonnegative smooth function on $\bar{\Omega}$.

Many author studied global attractor for the various equations [6, 7, 16]. The existence of attractor for wave equation with critical exponent was obtained in [$8,9,18,19$]. Nakao [12] dealt with the global attractor of the quasi-linear wave equation with a strong dissipation. In [17], the authors showed the existence of global attractor for plate equation with nonlinear damping. In [13, 14], the authors dealt with the global attractor for nonlinear parabolic equation of m Laplace type in \mathbb{R}^{N}. Recently, the research of beam equations have attracted considerable attention(see $[1,2,4,5]$ and reference there in). For instance Ma and Narciso[10] proved the global attractors for a model of extensible beam with nonlinear damping and source terms.

Received April 05, 2016; Accepted April 27, 2016.
2010 Mathematics Subject Classification. 35L20, 35B41, 74H40.
Key words and phrases. Beam equation, Global attractor, Long-time behavior.

Global attractor is a basic concept to study the long-time behavior of solutions for nonlinear evolution equations with various dissipations [3, 7, 15]. Motivated these papers, we will consider the global attractor of the beam equation (1) - (3) with nonlinear damping and critical nonlinearity. To our knowledge, attractors for the problem (1) - (3) with nonlinear damping and critical nonlinearity were not previously considered. This paper organized as follows. In section 2 , we introduce the assumption and some results about the theory of attractors and the existence of solution to the problems (1) - (3) and we state our main results. Section 3 is devoted to the proof of our main results.

2. Preliminaries and the Main Result

Throughout this paper, $E(t)$ is the energy of the solution at time t to problem (1) - (3) defined by

$$
E(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2}\|\Delta u(t)\|_{2}^{2}+\frac{1}{2} \int_{\Omega} F\left(|\nabla u|^{2}\right) d x+\int_{\Omega} \tilde{f}(u(t)) d x-\int_{\Omega} h u(t) d x
$$

where $F(s)=\int_{0}^{s} \sigma(\eta) d \eta$ and $\tilde{f}(z)=\int_{0}^{z} f(s) d s$.
Let us begin with precise hypotheses on the functions F, f and g. Suppose that

$$
\sup _{0 \leq t \leq T}\|\nabla u(t)\|_{\infty}^{2}<L
$$

(H1) $F\left(|\nabla u|^{2}\right) \geq k_{0}|\nabla u|^{2} \quad$ if $|\nabla u|^{2}<L$, where $k_{0}=\sup _{t} \min _{0 \leq \theta \leq|\nabla u|^{2}} \sigma(\theta)$.
(H2) There exists a constant $\tilde{k}>0$ such that $\sigma\left(|\nabla u|^{2}\right)|\nabla u|^{2} \geq \tilde{k} F\left(|\nabla u|^{2}\right)$ if $|\nabla u|^{2}<$ L, where $\tilde{k}=\sigma\left(|\nabla u|^{2}\right) / \sup \sigma(\theta), 0<\theta<|\nabla u|^{2}$.
Since $\sigma(v)$ belongs to $C^{m+2}([0, L])$ for some $L>0$, there exist $M=\sup _{t} \max _{0 \leq \theta \leq|\nabla u|^{2}} \sigma(\theta)$.
By (H1) and (H2), we get the following inequality

$$
\begin{equation*}
\tilde{k} F\left(|\nabla u|^{2}\right) \leq \sigma\left(|\nabla u|^{2}\right)|\nabla u|^{2} \leq M|\nabla u|^{2} \leq \frac{M}{k_{0}} F\left(|\nabla u|^{2}\right) \tag{4}
\end{equation*}
$$

(H3) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ belongs to C^{1} and $f(0)=0$. Also, there exist constants $k_{0}, k_{1}, A_{0}, A_{1}>0$ such that
(i) $|f(u)-f(v)| \leq k_{1}\left(1+|u|^{\rho}+|v|^{\rho}\right)|u-v|, \quad \forall u, v \in \mathbb{R}$.
(ii) $\left|f^{\prime}(u)\right| \leq k_{0}\left(1+|u|^{\rho}\right), \quad \forall u \in \mathbb{R}$, where $0<\rho \leq \frac{2}{N-2}$ if $N \geq 3$ and $\rho>0$ if $N=1,2$.
(iii) $-A_{0} \leq \tilde{f}(u) \leq \frac{1}{2} f(u) u+A_{1}, \quad \forall u \in \mathbb{R}$, where $\tilde{f}(z)=\int_{0}^{z} f(s) d s$.
$(\mathbf{H} 4) a(x) \in L^{\infty}(\Omega), a(x) \geq \alpha_{0}>0$ in Ω.
(H5) The function $g: \mathbb{R} \rightarrow \mathbb{R}$ belongs to C^{1} and $g(0)=0$. There exist constants $k_{2}, k_{3}>0$ such that
(i) $|g(u)-g(v)| \leq k_{2}\left(1+|u|^{r}+|v|^{r}\right)|u-v|, \quad \forall u, v \in \mathbb{R}$.
(ii) $(g(u)-g(v))(u-v) \geq k_{3}|u-v|^{r+2}, \quad \forall u, v \in \mathbb{R}$,
where $0<r \leq \frac{2}{N-2}$ if $N \geq 3$ and $r>0$ if $N=1,2$.
As basic space we use

$$
\mathcal{H}=H_{0}^{2}(\Omega) \times L^{2}(\Omega)
$$

equipped with the norm

$$
\|(u, v)\|_{\mathcal{H}}^{2}=\|\Delta u\|_{2}^{2}+\|v\|_{2}^{2},
$$

where $\|\cdot\|_{p}$ denote L^{p} norm.
We also need the following lemma of Nakao[11].
Lemma 2.1. Let $\phi(t)$ be a nonnegative function on \mathbb{R}^{+}satisfying

$$
\sup _{t \leq s \leq t+T} \phi(s)^{1+\gamma} \leq C\{\phi(t)-\phi(t+T)\}
$$

with $T>0, \gamma>0$ and C is some positive constant. Then $\phi(t)$ has the decay property

$$
\phi(t) \leq\left\{\phi(0)^{-\gamma}+\frac{\gamma}{C}(t-T)\right\}^{-\frac{1}{\gamma}}
$$

for $t \geq T$.
Definition 1. Let $S(t)$ be a C_{0}-semigroup defined on a complete metric space H. Then $S(t)$ has a global attractor in H if and only if it satisfied following two conditions.
(i) A bounded set $\mathbf{B} \subset H$ is an absorbing set for $S(t)$: For any bounded set $\mathbf{B} \subset H$ is an absorbing set for $S(t)$ if for any bounded set $B \subset H$, there exists $t_{\tau}=t_{\tau}(B) \geq 0$ such that

$$
S(t) B \subset \mathbf{B}, \quad \forall t \geq t_{\tau}
$$

which defines $(H, S(t))$ as a dissipative dynamical system.
(ii) $S(t)$ is asymptotically smooth in H : If for any bounded positive invariant set $B \subset H$, there exists a compact set $K \subset \bar{B}$ such that

$$
\operatorname{dist}(S(t) B, K) \rightarrow 0 \text { as } t \rightarrow \infty
$$

Theorem 2.2. [10] Let $S(t)$ be a dissipative C_{0}-semigroup defined on a metric space H. Then $S(t)$ has a compact global attractor in H if and only if it is asymptotically smooth in H.

Lemma 2.3. [10] Assume that for any bounded positive invariant set $B \subset H$, and for any $\varepsilon>0$, there exists $T=T(\varepsilon, B)$ such that

$$
d(S(T) \alpha, S(T) \beta) \leq \varepsilon+\varphi_{T}(\alpha, \beta), \quad \forall \alpha, \beta \in B
$$

Here $\varphi_{T}: H \times H \rightarrow \mathbb{R}$ satisfies $\liminf _{m \rightarrow \infty} \liminf _{n \rightarrow \infty} \varphi_{T}\left(z_{n}, z_{m}\right)=0$, where $\left\{z_{n}\right\} \subset B$ is any sequence. Then $S(t)$ is asymptotically smooth.

The existence and the regularity of solutions u to the problem (1) - (3) are given by the following standard well-known result (see [19]):
Theorem 2.4. Assume that (H3) - (H4) hold and $h \in L^{2}(\Omega)$. Also $a(\cdot) \in$ $C^{m-1}(\bar{\Omega})$ and $\left(u_{0}, u_{1}\right) \in \mathcal{H}$. Then the problem (1) - (3) admits a unique solution $u(t) \in C\left(\mathbb{R}^{+} ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left(\mathbb{R}^{+} ; L^{2}(\Omega)\right)$ and $\left(u, u_{t}\right)$ depends continuously on initial data in \mathcal{H}.

The main result of this paper reads as follows:
Theorem 2.5. Under the hypotheses (H1)-(H3), the associate semigroup $S(t)$ of problem (1) - (3) has a global attractor \mathbb{A} in $\mathcal{H}=H_{0}^{2}(\Omega) \times L^{2}(\Omega)$. Further, there exists a constant $C_{h}>0$ such that

$$
\mathbb{A} \subset \mathbf{B}=\left\{(u, v) \in \mathcal{H} \mid\|\Delta u\|_{2}^{2}+\|v\|_{2}^{2} \leq C_{h}\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right)\right\}
$$

and for each bounded subset $B \subset \mathcal{H}$, there exists a constant $C(B)$ such that

$$
\operatorname{dist}(S(t) B, \mathbf{B}) \leq C(B)(1+t)^{-\frac{1}{r}}
$$

3. Proof of Theorem 2.5

(I) : Absorbing set

Lemma 3.1. Under the hypotheses $(H 1)-(H 3), S(t)$ has an absorbing set $\mathbf{B} \subset \mathcal{H}$.

Proof. We note that $B \subset \mathcal{H}$ is an arbitrary fixed bounded set and $\left(u(t), u_{t}(t)\right)=$ $S(t)\left(u_{0}, u_{1}\right),\left(u_{0}, u_{1}\right) \in B$ is solutions of problem (1) - (3). We set the modified energy functional

$$
\begin{aligned}
E_{1}(t)= & \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2}\|\Delta u(t)\|_{2}^{2}+\frac{1}{2} \int_{\Omega} F\left(|\nabla u|^{2}\right) d x+\int_{\Omega} \tilde{f}(u(t)) d x-\int_{\Omega} h u(t) d x \\
& +A_{0}|\Omega|+\frac{1}{\lambda_{1}}\|h\|_{2}^{2}=E(t)+A_{0}|\Omega|+\frac{1}{\lambda_{1}}\|h\|_{2}^{2}
\end{aligned}
$$

where $\lambda_{1}>0$ is the first eigenvalue of the bi-harmonic operator Δ^{2} in $H_{0}^{2}(\Omega)$.
We claim that

$$
\mathbf{B}=\left\{(u, v) \in \mathcal{H} \mid\|\Delta u\|_{2}^{2}+\|v\|_{2}^{2} \leq C_{h}\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right)\right\}
$$

is an absorbing set for $S(t)$.
The proof is given by similar argument as in [10]. We will sketch it briefly. Using (H3) and the fact $\|u\|_{2}^{2} \leq \lambda_{1}^{-1}\|\Delta u\|_{2}^{2}, \forall u \in H_{0}^{2}(\Omega)$, we get

$$
\begin{equation*}
E_{1}(t) \geq \frac{1}{4}\left(\|\Delta u\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}\right)+\frac{1}{2} \int_{\Omega} F\left(|\nabla u|^{2}\right) d x \geq \frac{1}{4}\left(\|\Delta u\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}\right) \tag{5}
\end{equation*}
$$

Now we shall derive the inequality

$$
E_{1}(t) \leq C_{1}\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right), \forall t>t_{B}>0 .
$$

By multiplying the equation (1) by u_{t} and integrating over Ω, we obtain

$$
\frac{d}{d t} E(t)=-\int_{\Omega} a(x) g\left(u_{t}\right) u_{t} d x
$$

Therefore,

$$
E(t)-E(t+1)=\int_{t}^{t+1} \int_{\Omega} a(x) g\left(u_{t}\right) u_{t} d x d s \geq 0
$$

Setting

$$
D(t)^{2}=E_{1}(t)-E_{1}(t+1)=E(t)-E(t+1)
$$

Using condition (H4) and Höder inequality we get

$$
\int_{t}^{t+1}\left\|u_{t}\right\|_{2}^{2} d s=\int_{t}^{t+1} \int_{\Omega}\left|u_{t}\right|^{2} d x d s \leq \frac{1}{k_{3}}|\Omega|^{\frac{r}{r+2}} D(t)^{\frac{4}{r+2}} .
$$

Then by Mean Value Theorem for integrals there exist two numbers $t_{1} \in\left[t, t+\frac{1}{4}\right]$ and $t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\left\|u_{t}\left(t_{i}\right)\right\|_{2}^{2} \leq \frac{4}{k_{3}}|\Omega|^{\frac{r}{r+2}} D(t)^{\frac{4}{r+2}}, \quad i=1,2 .
$$

By multiplying the equation (1) by u and integration over Ω, we obtain that

$$
\begin{align*}
\|\Delta u\|_{2}^{2}= & -\sigma\left(|\nabla u|^{2}\right)\|\nabla u\|_{2}^{2}-\int_{\Omega} f(u) u d x+\left\|u_{t}\right\|_{2}^{2}-\frac{d}{d t} \int_{\Omega} u_{t} u d x \\
& -\int_{\Omega} a(x) g\left(u_{t}\right) u d x+\int_{\Omega} h u d x \tag{6}
\end{align*}
$$

By definition of $E_{1}(t)$ and (6)

$$
\begin{align*}
E_{1}(t) & =\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2}\left(\int_{\Omega} F\left(|\nabla u|^{2}\right) d x-\sigma\left(|\nabla u|^{2}\right)\|\nabla u\|_{2}^{2}\right)+\int_{\Omega}\left(\tilde{f}(u)-\frac{1}{2} f(u) u\right) d x \\
- & \frac{1}{2} \frac{d}{d t} \int_{\Omega} u_{t} u d x-\frac{1}{2} \int_{\Omega} a(x) g\left(u_{t}\right) u d x-\frac{1}{2} \int_{\Omega} h u d x+A_{0}|\Omega|+\frac{1}{\lambda_{1}}\|h\|_{2}^{2} \tag{7}
\end{align*}
$$

Using (4), we obtain

$$
\begin{equation*}
\int_{\Omega} F\left(|\nabla u|^{2}\right) d x-\sigma\left(|\nabla u|^{2}\right)\|\nabla u\|_{2}^{2} \leq \int_{\Omega}(1-\tilde{k}) F\left(|\nabla u|^{2}\right) d x \leq 2(1-\tilde{k}) E_{1} \tag{8}
\end{equation*}
$$

From (7) and (8), we have

$$
\begin{aligned}
\tilde{k} \int_{t_{1}}^{t_{2}} E_{1}(s) d s \leq & \int_{t_{1}}^{t_{2}}\left\|u_{t}\right\|_{2}^{2} d s-\frac{1}{2}\left(\int_{\Omega} u_{t}\left(t_{2}\right) u\left(t_{2}\right) d x-\int_{\Omega} u_{t}\left(t_{1}\right) u\left(t_{1}\right) d x\right) \\
& -\frac{1}{2} \int_{t_{1}}^{t_{2}} \int_{\Omega} h u d x d s+\frac{1}{2} \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|a(x) g\left(u_{t}\right) u\right| d x d s \\
& +\frac{1}{\lambda_{1}}\|h\|_{2}^{2}+\left(A_{0}+A_{1}\right)|\Omega|
\end{aligned}
$$

Using Mean value theorem, Young's inequality and definition of $D(t)^{2}$ and after some calculation, we derive

$$
E_{1}(t) \leq C_{B} D(t)^{\frac{4}{r+2}}+C\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right)
$$

This inequality implies that

$$
E_{1}(t)^{1+\frac{r}{2}} \leq C_{B}\left(E_{1}(t)-E_{1}(t+1)\right)+C\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right)^{\frac{r+2}{2}} .
$$

Applying Lemma 2.1 to above inequality and $t \rightarrow \infty$, then

$$
\begin{equation*}
E_{1}(t) \leq C\left(\|h\|_{2}^{2}+A_{0}+A_{1}\right), \quad \forall t>t_{B} \tag{9}
\end{equation*}
$$

where $t_{B}>0$ and depending on B. Combining (5) and (9), we completed the proof of Lemma 3.1.

(II): Asymptotic Smoothness

Now we prove that $S(t)$ is asymptotically smooth. To prove the asymptotic smoothness, we will use Lemma 2.3.

Lemma 3.2. Under the hypotheses (H1)-(H3), $S(t)$ is asymptotically smooth in \mathcal{H}.

Proof. Let u, v be two solutions of problem (1) with the initial data $\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right) \in$ B, respectively. Here $B \subset \mathcal{H}$ is a bounded positive invariant set for $S(t)$. Putting $w=u-v$, we have

$$
\begin{align*}
& w_{t t}+\Delta^{2} w+a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right) \\
& =\nabla \cdot\left\{\sigma\left(|\nabla u|^{2}\right) \nabla u\right\}-\nabla \cdot\left\{\sigma\left(|\nabla v|^{2}\right) \nabla v\right\}-(f(u)-f(v)) \tag{10}\\
& \text { in } \Omega \times[0, \infty), \\
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \times[0, \infty), \tag{11}\\
& w(x, 0)=u_{0}-v_{0}, \quad w_{t}(x, 0)=u_{1}-v_{1} \text { in } \Omega . \tag{12}
\end{align*}
$$

Now we define the functional $E_{w}(t)$ such as

$$
E_{w}(t)=\left\|w_{t}(t)\right\|_{2}^{2}+\|\Delta w(t)\|_{2}^{2}+\sigma\left(|\nabla u|^{2}\right)\|\nabla w\|_{2}^{2}
$$

We will claim that

$$
\begin{equation*}
E_{w}(t) \leq C_{B}(1+t)^{-\frac{2}{r}}+C_{T}\left(\sup _{0 \leq \alpha \leq T} \int_{\alpha}^{\alpha+1}\|\nabla w\|_{2} d s\right)^{\frac{2}{r+2}}, \quad 0 \leq t \leq T \tag{13}
\end{equation*}
$$

If it is done, we will apply Lemma 2.3. By (13) and definition of $E_{w}(t)$, there exist constants $\tilde{C}_{B}, \tilde{C}_{T}$ such that

$$
\begin{equation*}
\left\|w(t), w_{t}(t)\right\|_{\mathcal{H}} \leq \tilde{C}_{B}(1+t)^{-\frac{1}{r}}+\tilde{C}_{T} \sup _{0 \leq \alpha \leq T}\left(\int_{\alpha}^{\alpha+1}\|\nabla w(s)\|_{2} d s\right)^{\frac{1}{r+2}}, 0 \leq t \leq T \tag{14}
\end{equation*}
$$

Given $\varepsilon>0$, we fix a sufficiently large T so that,

$$
\tilde{C}_{B}(1+T)^{-\frac{1}{r}}<\varepsilon .
$$

Then we define $\psi_{T}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ by

$$
\psi_{T}\left(\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)\right)=\tilde{C}_{T} \sup _{0 \leq \alpha \leq T}\left(\int_{\alpha}^{\alpha+1}\|\nabla w(s)\|_{2} d s\right)^{\frac{1}{r+2}}
$$

From (14) and fixed a sufficiently large T, we obtain

$$
\left\|S(T)\left(u_{0}, u_{1}\right)-S(T)\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}} \leq \varepsilon+\psi_{T}\left(\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)\right)
$$

for all $\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right) \in B$.
Since $\left\{u^{n}\right\}$ is bounded in $C\left([0, \infty) ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left([0, \infty) ; L^{2}(\Omega)\right)$ and $H_{0}^{2}(\Omega) \hookrightarrow$ $H_{0}^{1}(\Omega)$ compactly, there exists a subsequence $\left\{u^{n_{i}}\right\}$ which converges strongly in $C\left([0, T+1] ; H_{0}^{1}(\Omega)\right)$. Then

$$
\lim _{i \rightarrow \infty} \lim _{j \rightarrow \infty} \psi\left(\left(u_{0}^{n_{i}}, u_{1}^{n_{i}}\right),\left(u_{0}^{n_{j}}, u_{1}^{n_{j}}\right)\right)=0
$$

Therefore, by Lemma 2.3, $S(t)$ is asymptotically smooth.
From now on we claim (13). Indeed the proof is similar to Lemma 3.4 in [10]. So we will sketch it briefly. By multiplying the equation (10) - (12) by w_{t} and integrating over Ω, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} E_{w}(t)+\int_{\Omega} a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right) w_{t} d x \\
&= \sigma^{\prime}\left(|\nabla u|^{2}\right) \nabla u \nabla u_{t}\|\nabla w\|_{2}^{2}-\left(\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right)\right) \nabla v \nabla w_{t} \\
&-\int_{\Omega}(f(u)-f(v)) w_{t} d x \\
&=-\sigma^{\prime}\left(|\nabla u|^{2}\right)\|\nabla w\|_{2}^{2} \int_{\Omega} \Delta u u_{t} d x+\left(\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right)\right) \int_{\Omega} \Delta v w_{t} d x \\
&-\int_{\Omega}(f(u)-f(v)) w_{t} d x \\
&= I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Now we will estimate I_{1}, I_{2}, I_{3}. It is obvious that

$$
\left|I_{1}\right| \leq C_{1}\|\nabla w(t)\|_{2}^{2}
$$

here we use continuity of σ^{\prime}.

$$
\left|I_{2}\right| \leq C_{2}\|\nabla w\|_{2}^{\frac{r+2}{r+1}}+\frac{\alpha k_{3}}{4}\left\|w_{t}\right\|_{r+2}^{r+2}
$$

here we use the fact $\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right) \leq \sigma^{\prime}\left(\sup \left\{\nabla u\left\|_{2}^{2},\right\| \nabla v \|_{2}^{2}\right\}\right)\|\nabla w\|(\|\nabla u\|+$ $\|\nabla v\|)$. Using Hölder inequality with $\frac{\rho}{2(\rho+1)}+\frac{1}{2(\rho+1)}+\frac{1}{2}=1$, we obtain that

$$
\begin{aligned}
\left|I_{3}\right| & \leq k_{1}\left(\int_{\Omega}\left(1+|u|^{\rho}+|v|^{\rho}\right)^{\frac{2(\rho+1)}{\rho}} d x\right)^{\frac{\rho}{2(\rho+1)}}\|w\|_{2(\rho+1)}\left\|w_{t}\right\|_{2} \\
& \leq C_{3}\|\nabla w\|_{2}\left\|w_{t}\right\|_{r+2} \leq C_{4}\|\nabla w\|_{2}^{\frac{r+2}{r+1}}+\frac{\alpha k_{3}}{4}\left\|w_{t}\right\|_{r+2}^{r+2} .
\end{aligned}
$$

On the other hand,

$$
\int_{\Omega} a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right)\left(u_{t}-v_{t}\right) d x \geq \alpha k_{3}\left\|w_{t}\right\|_{r+2}^{r+2}
$$

Therefore,

$$
\frac{1}{2} \frac{d}{d t} E_{w}(t)+\frac{\alpha k}{2}\|w\|_{r+2}^{r+2} \leq C\|\nabla w\|_{2}\left(\|\nabla w\|_{2}+\|\nabla w\|_{2}^{\frac{1}{r+1}}\right)
$$

So, we derive that

$$
\begin{equation*}
\int_{t}^{t+1}\left\|w_{t}\right\|_{r+2}^{r+2} d s \leq E_{w}(t)-E_{w}(t+1)+C_{5} \int_{t}^{t+1}\|\nabla w(s)\|_{2} d s \equiv G(t)^{2} \tag{15}
\end{equation*}
$$

For all $t_{1} \in\left[t, t+\frac{1}{4}\right], t_{2} \in\left[t+\frac{3}{4}, t+1\right]$, there exists

$$
\left\|w_{t}\left(t_{i}\right)\right\|_{2}^{2} \leq C_{6} G(t)^{\frac{4}{r+2}} .
$$

Multiplying the equation (10) - (12) by w and integrating over Ω, then

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} w_{t} w d x-\left\|w_{t}\right\|_{2}^{2}\|\Delta w(t)\|_{2}^{2}+\int_{\Omega} a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right) w d x \\
& =-\sigma\left(|\nabla u|^{2}\right)\|\nabla w\|_{2}^{2}+\int_{\Omega}\left(\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right)\right) \Delta v w d x \\
& \quad-\int_{\Omega}(f(u(t))-f(v(t))) w d x \tag{16}
\end{align*}
$$

Integrating (16) from t_{1} to t_{2},

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}\left(\|\Delta w\|_{2}^{2}+\sigma\left(|\nabla u|^{2}\right)\|\nabla w\|_{2}^{2}\right) d s \\
& \leq\left|\int_{t_{1}}^{t_{2}} \frac{d}{d t} \int_{\Omega} w_{t}(s) w(s) d x d s\right|+\left|\int_{t_{1}}^{t_{2}}\left\|w_{t}(s)\right\|_{2}^{2} d s\right| \\
& \quad+\left|\int_{t_{1}}^{t_{2}}\left(\left(\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right)\right) \int_{\Omega} \Delta v(s) w(s) d x\right) d s\right| \\
& \quad+\left|\int_{t_{1}}^{t_{2}} \int_{\Omega}(f(u)-f(v)) w d x d s\right|+\left|\int_{t_{1}}^{t_{2}} \int_{\Omega} a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right) w d x d s\right| \\
& \leq C_{6} G(t)^{\frac{4}{r+2}}+\frac{1}{4} \sup _{t \leq \sigma \leq t+1} E_{w}(\sigma)+C_{7} \int_{t}^{t+1}\|\nabla w(s)\|_{2} d s \tag{17}
\end{align*}
$$

Here we use the facts

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \int_{\Omega} a(x)\left(g\left(u_{t}\right)-g\left(v_{t}\right)\right) w d x \leq C_{6} G(t)^{\frac{4}{r+2}}+\frac{1}{8} \sup _{t \leq \alpha \leq t+1} E_{w}(\alpha) \\
& \int_{t_{1}}^{t_{2}} \int_{\Omega}(f(u)-f(v)) w d x d s \leq C_{7} \int_{t_{1}}^{t_{2}}\|\nabla w(s)\|_{2} d s
\end{aligned}
$$

and

$$
\int_{t_{1}}^{t_{2}}\left\{\left(\sigma\left(|\nabla u|^{2}\right)-\sigma\left(|\nabla v|^{2}\right)\right) \int_{\Omega} \Delta v w d x\right\} d s \leq C_{7} \int_{t_{1}}^{t_{2}}\|\nabla w\|_{2} d s
$$

Then by definition $E_{w}(t)$ and (17), we get

$$
\int_{t_{1}}^{t_{2}} E_{w}(s) d s \leq C_{6} G(t)^{\frac{4}{r+2}}+\frac{1}{4} \sup _{t \leq \sigma \leq t+1} E_{w}(\sigma)+C_{7} \int_{t}^{t+1}\|\nabla w(s)\|_{2} d s
$$

By Mean Value Theorem, there exists $t^{*} \in\left[t_{1}, t_{2}\right]$ such that

$$
\begin{equation*}
E_{w}\left(t^{*}\right) \leq C_{6} G(t)^{\frac{4}{r+2}}+\frac{1}{2} \sup _{t \leq \sigma \leq t+1} E_{w}(\sigma)+C_{7} \int_{t}^{t+1}\|\nabla w(s)\|_{2} d s \tag{18}
\end{equation*}
$$

Also, using (15) we can derive that

$$
\sup _{t \leq \alpha \leq t+1} E_{w}(\alpha) \leq E_{w}\left(t^{*}\right)+G(t)^{2}+2 C_{5} \int_{t}^{t+1}\|\nabla w(s)\| d s
$$

Using this fact, property of $G(t)$ and (18) then we obtain

$$
\sup _{t \leq \alpha \leq t+1} E_{w}(\alpha)^{1+\frac{r}{2}} \leq C_{8}\left(E_{w}(t)-E_{w}(t+1)\right)+C_{9} \sup _{0 \leq \alpha \leq T} \int_{\alpha}^{\alpha+1}\|\nabla w(s)\| d s
$$

By applying Lemma 2.1 we can derive (13). So we prove that $S(t)$ is asymptotically smooth.

References

[1] J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973),399-418.
[2] , Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90.
[3] A. V. Babin, M. I. Vishik, Attrators of evolution equations, Nauka, Moscow, 1989(1992) (English translation, North-Holland 1992).
[4] R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl. 29 (1970) 443-454.
[5] _ Dynamic stability of equilibrium states of the extensible beam, J. Proc. Amer. Math. Soc. 41 (1973) 94-102.
[6] C. M. Dafermos, Asymptotic behavior of solutions of evolution equations in nonlinear evolution equations(M. G. Crandall, ed.), Funkcial. Ekvac. 38 (1995) 545-568.
[7] J. K. Hale, Asymptotic behavior of dissipative systems, AMS, Providence, RI, 1988.
[8] A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with the critical exponent in an unbounded domain, Appl. Math. Letter 18 (2005) 827-832.
[9] __ Global attractors for plate equation with a localized damping and critical exponent in an unbounded domain, J. Differential Equations 225 (2006) 528-548.
[10] To Fu Ma, V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal. 73 (2010) 3402-3412.
[11] M. Nakao, Global attractors for wave equaitons with nonlinear dissipative terms, J. Differential Equations 227 (2006) 204-229.
[12] , Global attractors for some quasi-linear wave equations with a strong with a strong dissipation, Advances in Math. Sciences Appl. 17 (2007), no.1, 89-105.
[13] M. Nakao and C. Chen, On global attractors for a nonlinear parabolic equation of m laplacian type in R^{N}, Funkcialaj Ekvacioj 50 (2007) 449-458.
[14] M. Nakao and N. Aris, On global attractor for nonlinear parabolic equations of mlaplacian type, J. Math. Anal. Appl. 331 (2007) 793-809.
[15] R. Temam, Infinite dimensional dynamic system in meachanics and physics, Springer, New York, 1997.
[16] Y. Xie, C. Zhong, Asymptotic behavior of a class of nonlinear evolution equations, Nonlinear Anal. 71 (2009) 5095-5105.
[17] L. Yang, C. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Anal. 69 (2008) 3802-3810.
[18] G. Yue, C. Zhong, Golbal attractors for plate equations with critical exponent in locallay uniform spaces, Nonlinear Anal. 71 (2009) 4105-4114.
[19] Y. Zhijian, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Meth. Appl. Sci. 32 (2009) 1082-1104.

Mi Jin Lee
Department of Mathematics, Pusan National University, Pusan 609-735, South Korea

E-mail address: jin0624@pusan.ac.kr

