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GLOBAL ATTRACTOR FOR SOME BEAM EQUATION WITH

NONLINEAR SOURCE AND DAMPING TERMS

Mi Jin Lee

Abstract. Global attractor is a basic concept to study the long-time

behavior of solutions of the various equations. This paper is investigated

with the existence of a global attractor for the beam equation

utt + ∆2u−∇ · {σ(|∇u|2)∇u}+ f(u) + a(x)g(ut) = h,

using multipliers technique and Nakao’s Lemma.

1. Introduction

In this paper, we consider the existence of global attractor for the following
beam equation with nonlinear damping and critical nonlinearity:

utt + ∆2u−∇ · {σ(|∇u|2)∇u}+ f(u) + a(x)g(ut) = h in Ω× R+ (1)

u = 0 on ∂Ω× R+, (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (3)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, R+ = [0,∞),
σ(v) is a function like σ(v) = 1/

√
1 + v and a(x) is a nonnegative smooth

function on Ω̄.
Many author studied global attractor for the various equations [6, 7, 16]. The

existence of attractor for wave equation with critical exponent was obtained in
[8, 9, 18, 19]. Nakao [12] dealt with the global attractor of the quasi-linear wave
equation with a strong dissipation. In [17], the authors showed the existence
of global attractor for plate equation with nonlinear damping. In [13, 14], the
authors dealt with the global attractor for nonlinear parabolic equation of m-
Laplace type in RN . Recently, the research of beam equations have attracted
considerable attention(see [1, 2, 4, 5] and reference there in). For instance Ma
and Narciso[10] proved the global attractors for a model of extensible beam
with nonlinear damping and source terms.
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Global attractor is a basic concept to study the long-time behavior of solu-
tions for nonlinear evolution equations with various dissipations [3, 7, 15]. Mo-
tivated these papers, we will consider the global attractor of the beam equation
(1) − (3) with nonlinear damping and critical nonlinearity. To our knowledge,
attractors for the problem (1) − (3) with nonlinear damping and critical non-
linearity were not previously considered. This paper organized as follows. In
section 2, we introduce the assumption and some results about the theory of
attractors and the existence of solution to the problems (1)− (3) and we state
our main results. Section 3 is devoted to the proof of our main results.

2. Preliminaries and the Main Result

Throughout this paper, E(t) is the energy of the solution at time t to problem
(1)− (3) defined by

E(t) =
1

2
‖ut‖22 +

1

2
‖∆u(t)‖22 +

1

2

∫
Ω

F (|∇u|2)dx+

∫
Ω

f̃(u(t))dx−
∫

Ω

hu(t)dx,

where F (s) =
∫ s

0
σ(η)dη and f̃(z) =

∫ z
0
f(s)ds.

Let us begin with precise hypotheses on the functions F, f and g. Suppose
that

sup
0≤t≤T

‖∇u(t)‖2∞ < L.

(H1) F (|∇u|2) ≥ k0|∇u|2 if |∇u|2 < L, where k0 = supt min0≤θ≤|∇u|2 σ(θ).

(H2) There exists a constant k̃ > 0 such that σ(|∇u|2)|∇u|2 ≥ k̃F (|∇u|2) if |∇u|2 <
L, where k̃ = σ(|∇u|2)/supσ(θ), 0 < θ < |∇u|2.
Since σ(v) belongs to Cm+2([0, L]) for some L > 0, there existM = supt max0≤θ≤|∇u|2 σ(θ).
By (H1) and (H2), we get the following inequality

k̃F (|∇u|2) ≤ σ(|∇u|2)|∇u|2 ≤M |∇u|2 ≤ M

k0
F (|∇u|2). (4)

(H3) The function f : R → R belongs to C1 and f(0) = 0. Also, there exist
constants k0, k1, A0, A1 > 0 such that

(i) |f(u)− f(v)| ≤ k1(1 + |u|ρ + |v|ρ)|u− v|, ∀u, v ∈ R.
(ii) |f ′(u)| ≤ k0(1 + |u|ρ), ∀u ∈ R, where 0 < ρ ≤ 2

N−2 if N ≥ 3 and ρ > 0
if N = 1, 2.

(iii) −A0 ≤ f̃(u) ≤ 1
2f(u)u+A1, ∀u ∈ R, where f̃(z) =

∫ z
0
f(s)ds.

(H4) a(x) ∈ L∞(Ω), a(x) ≥ α0 > 0 in Ω.
(H5) The function g : R→ R belongs to C1 and g(0) = 0. There exist constants
k2, k3 > 0 such that

(i) |g(u)− g(v)| ≤ k2(1 + |u|r + |v|r)|u− v|, ∀u, v ∈ R.
(ii) (g(u)− g(v))(u− v) ≥ k3|u− v|r+2, ∀u, v ∈ R,

where 0 < r ≤ 2
N−2 if N ≥ 3 and r > 0 if N = 1, 2.

As basic space we use
H = H2

0 (Ω)× L2(Ω)



GLOBAL ATTRACTOR FOR SOME BEAM EQUATION 379

equipped with the norm

‖(u, v)‖2H = ‖4u‖22 + ‖v‖22,
where ‖ · ‖p denote Lp norm.

We also need the following lemma of Nakao[11].

Lemma 2.1. Let φ(t) be a nonnegative function on R+ satisfying

sup
t≤s≤t+T

φ(s)1+γ ≤ C{φ(t)− φ(t+ T )}

with T > 0, γ > 0 and C is some positive constant. Then φ(t) has the decay
property

φ(t) ≤
{
φ(0)−γ +

γ

C
(t− T )

}− 1
γ

for t ≥ T .

Definition 1. Let S(t) be a C0-semigroup defined on a complete metric space
H. Then S(t) has a global attractor in H if and only if it satisfied following two
conditions.
(i) A bounded set B ⊂ H is an absorbing set for S(t): For any bounded set
B ⊂ H is an absorbing set for S(t) if for any bounded set B ⊂ H, there exists
tτ = tτ (B) ≥ 0 such that

S(t)B ⊂ B, ∀t ≥ tτ ,
which defines (H,S(t)) as a dissipative dynamical system.
(ii) S(t) is asymptotically smooth in H : If for any bounded positive invari-
ant set B ⊂ H, there exists a compact set K ⊂ B̄ such that

dist (S(t)B,K)→ 0 as t→∞.

Theorem 2.2. [10] Let S(t) be a dissipative C0-semigroup defined on a metric
space H. Then S(t) has a compact global attractor in H if and only if it is
asymptotically smooth in H.

Lemma 2.3. [10] Assume that for any bounded positive invariant set B ⊂ H,
and for any ε > 0, there exists T = T (ε,B) such that

d(S(T )α, S(T )β) ≤ ε+ ϕT (α, β), ∀α, β ∈ B.
Here ϕT : H × H → R satisfies lim infm→∞lim infn→∞ϕT (zn, zm) = 0, where
{zn} ⊂ B is any sequence. Then S(t) is asymptotically smooth.

The existence and the regularity of solutions u to the problem (1)− (3) are
given by the following standard well-known result (see [19]):

Theorem 2.4. Assume that (H3) − (H4) hold and h ∈ L2(Ω). Also a(·) ∈
Cm−1(Ω) and (u0, u1) ∈ H . Then the problem (1) − (3) admits a unique
solution u(t) ∈ C(R+;H2

0 (Ω))∩C1(R+;L2(Ω)) and (u, ut) depends continuously
on initial data in H.
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The main result of this paper reads as follows:

Theorem 2.5. Under the hypotheses (H1)−(H3), the associate semigroup S(t)
of problem (1)− (3) has a global attractor A in H = H2

0 (Ω)× L2(Ω). Further,
there exists a constant Ch > 0 such that

A ⊂ B = {(u, v) ∈ H|‖∆u‖22 + ‖v‖22 ≤ Ch(‖h‖22 +A0 +A1)}
and for each bounded subset B ⊂ H, there exists a constant C(B) such that

dist(S(t)B,B) ≤ C(B)(1 + t)−
1
r .

3. Proof of Theorem 2.5

(I) : Absorbing set

Lemma 3.1. Under the hypotheses (H1) − (H3), S(t) has an absorbing set
B ⊂ H.

Proof. We note that B ⊂ H is an arbitrary fixed bounded set and (u(t), ut(t)) =
S(t)(u0, u1), (u0, u1) ∈ B is solutions of problem (1)− (3). We set the modified
energy functional

E1(t) =
1

2
‖ut‖22 +

1

2
‖∆u(t)‖22 +

1

2

∫
Ω

F (|∇u|2)dx+

∫
Ω

f̃(u(t))dx−
∫

Ω

hu(t)dx

+A0|Ω|+
1

λ1
‖h‖22 = E(t) +A0|Ω|+

1

λ1
‖h‖22,

where λ1 > 0 is the first eigenvalue of the bi-harmonic operator ∆2 in H2
0 (Ω).

We claim that

B = {(u, v) ∈ H|‖∆u‖22 + ‖v‖22 ≤ Ch(‖h‖22 +A0 +A1)}
is an absorbing set for S(t).

The proof is given by similar argument as in [10]. We will sketch it briefly.
Using (H3) and the fact ‖u‖22 ≤ λ−1

1 ‖∆u‖22,∀u ∈ H2
0 (Ω), we get

E1(t) ≥ 1

4
(‖∆u‖22 + ‖ut‖22) +

1

2

∫
Ω

F (|∇u|2)dx ≥ 1

4
(‖∆u‖22 + ‖ut‖22). (5)

Now we shall derive the inequality

E1(t) ≤ C1(‖h‖22 +A0 +A1),∀t > tB > 0.

By multiplying the equation (1) by ut and integrating over Ω, we obtain

d

dt
E(t) = −

∫
Ω

a(x)g(ut)utdx.

Therefore,

E(t)− E(t+ 1) =

∫ t+1

t

∫
Ω

a(x)g(ut)utdxds ≥ 0.

Setting
D(t)2 = E1(t)− E1(t+ 1) = E(t)− E(t+ 1).
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Using condition (H4) and Höder inequality we get∫ t+1

t

‖ut‖22ds =

∫ t+1

t

∫
Ω

|ut|2dxds ≤
1

k3
|Ω|

r
r+2D(t)

4
r+2 .

Then by Mean Value Theorem for integrals there exist two numbers t1 ∈ [t, t+ 1
4 ]

and t2 ∈ [t+ 3
4 , t+ 1] such that

‖ut(ti)‖22 ≤
4

k3
|Ω|

r
r+2D(t)

4
r+2 , i = 1, 2.

By multiplying the equation (1) by u and integration over Ω, we obtain that

‖∆u‖22 = −σ(|∇u|2)‖∇u‖22 −
∫

Ω

f(u)udx+ ‖ut‖22 −
d

dt

∫
Ω

utudx

−
∫

Ω

a(x)g(ut)udx+

∫
Ω

hudx. (6)

By definition of E1(t) and (6)

E1(t) = ‖ut‖22 +
1

2

(∫
Ω

F (|∇u|2)dx− σ(|∇u|2)‖∇u‖22
)

+

∫
Ω

(f̃(u)− 1

2
f(u)u)dx

−1

2

d

dt

∫
Ω

utudx−
1

2

∫
Ω

a(x)g(ut)udx−
1

2

∫
Ω

hudx+A0|Ω|+
1

λ1
‖h‖22. (7)

Using (4), we obtain∫
Ω

F (|∇u|2)dx− σ(|∇u|2)‖∇u‖22 ≤
∫

Ω

(1− k̃)F (|∇u|2)dx ≤ 2(1− k̃)E1 (8)

From (7) and (8), we have

k̃

∫ t2

t1

E1(s)ds ≤
∫ t2

t1

‖ut‖22ds−
1

2

(∫
Ω

ut(t2)u(t2)dx−
∫

Ω

ut(t1)u(t1)dx

)
−1

2

∫ t2

t1

∫
Ω

hudxds+
1

2

∫ t2

t1

∫
Ω

|a(x)g(ut)u|dxds

+
1

λ1
‖h‖22 + (A0 +A1)|Ω|.

Using Mean value theorem, Young’s inequality and definition of D(t)2 and after
some calculation, we derive

E1(t) ≤ CBD(t)
4
r+2 + C(‖h‖22 +A0 +A1).

This inequality implies that

E1(t)1+ r
2 ≤ CB(E1(t)− E1(t+ 1)) + C(‖h‖22 +A0 +A1)

r+2
2 .

Applying Lemma 2.1 to above inequality and t→∞, then

E1(t) ≤ C(‖h‖22 +A0 +A1), ∀t > tB , (9)

where tB > 0 and depending on B. Combining (5) and (9), we completed the
proof of Lemma 3.1. �
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(II): Asymptotic Smoothness
Now we prove that S(t) is asymptotically smooth. To prove the asymptotic

smoothness, we will use Lemma 2.3.

Lemma 3.2. Under the hypotheses (H1)−(H3), S(t) is asymptotically smooth
in H.

Proof. Let u, v be two solutions of problem (1) with the initial data (u0, u1), (v0, v1) ∈
B, respectively. Here B ⊂ H is a bounded positive invariant set for S(t).
Putting w = u− v, we have

wtt + ∆2w + a(x)(g(ut)− g(vt))

= ∇ · {σ(|∇u|2)∇u} − ∇ · {σ(|∇v|2)∇v} − (f(u)− f(v)) (10)

in Ω× [0,∞),

∂w

∂ν
= 0 on Γ× [0,∞), (11)

w(x, 0) = u0 − v0, wt(x, 0) = u1 − v1 in Ω. (12)

Now we define the functional Ew(t) such as

Ew(t) = ‖wt(t)‖22 + ‖∆w(t)‖22 + σ(|∇u|2)‖∇w‖22.
We will claim that

Ew(t) ≤ CB(1 + t)−
2
r + CT

(
sup

0≤α≤T

∫ α+1

α

‖∇w‖2ds
) 2
r+2

, 0 ≤ t ≤ T. (13)

If it is done, we will apply Lemma 2.3. By (13) and definition of Ew(t), there

exist constants C̃B , C̃T such that

‖w(t), wt(t)‖H ≤ C̃B(1+t)−
1
r +C̃T sup

0≤α≤T

(∫ α+1

α

‖∇w(s)‖2ds
) 1
r+2

, 0 ≤ t ≤ T.

(14)
Given ε > 0, we fix a sufficiently large T so that,

C̃B(1 + T )−
1
r < ε.

Then we define ψT : H×H → R by

ψT ((u0, u1), (v0, v1)) = C̃T sup
0≤α≤T

(∫ α+1

α

‖∇w(s)‖2ds
) 1
r+2

.

From (14) and fixed a sufficiently large T , we obtain

‖S(T )(u0, u1)− S(T )(v0, v1)‖H ≤ ε+ ψT ((u0, u1), (v0, v1)),

for all (u0, u1), (v0, v1) ∈ B.
Since {un} is bounded in C([0,∞);H2

0 (Ω))∩C1([0,∞);L2(Ω)) and H2
0 (Ω) ↪→

H1
0 (Ω) compactly, there exists a subsequence {uni} which converges strongly in

C([0, T + 1];H1
0 (Ω)). Then

lim
i→∞

lim
j→∞

ψ((uni0 , u
ni
1 ), (u

nj
0 , u

nj
1 )) = 0.
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Therefore, by Lemma 2.3, S(t) is asymptotically smooth.
From now on we claim (13). Indeed the proof is similar to Lemma 3.4 in [10].

So we will sketch it briefly. By multiplying the equation (10)− (12) by wt and
integrating over Ω, we get

1

2

d

dt
Ew(t) +

∫
Ω

a(x)(g(ut)− g(vt))wtdx

= σ′(|∇u|2)∇u∇ut‖∇w‖22 − (σ(|∇u|2)− σ(|∇v|2))∇v∇wt

−
∫

Ω

(f(u)− f(v))wtdx

= −σ′(|∇u|2)‖∇w‖22
∫

Ω

∆uutdx+ (σ(|∇u|2)− σ(|∇v|2))

∫
Ω

∆vwtdx

−
∫

Ω

(f(u)− f(v))wtdx

= I1 + I2 + I3.

Now we will estimate I1, I2, I3. It is obvious that

|I1| ≤ C1‖∇w(t)‖22,
here we use continuity of σ′.

|I2| ≤ C2‖∇w‖
r+2
r+1

2 +
αk3

4
‖wt‖r+2

r+2,

here we use the fact σ(|∇u|2)−σ(|∇v|2) ≤ σ′(sup{∇u‖22, ‖∇v‖22})‖∇w‖(‖∇u‖+
‖∇v‖). Using Hölder inequality with ρ

2(ρ+1) + 1
2(ρ+1) + 1

2 = 1, we obtain that

|I3| ≤ k1

(∫
Ω

(1 + |u|ρ + |v|ρ)
2(ρ+1)
ρ dx

) ρ
2(ρ+1)

‖w‖2(ρ+1)‖wt‖2

≤ C3‖∇w‖2‖wt‖r+2 ≤ C4‖∇w‖
r+2
r+1

2 +
αk3

4
‖wt‖r+2

r+2.

On the other hand,∫
Ω

a(x)(g(ut)− g(vt))(ut − vt)dx ≥ αk3‖wt‖r+2
r+2.

Therefore,

1

2

d

dt
Ew(t) +

αk

2
‖w‖r+2

r+2 ≤ C‖∇w‖2(‖∇w‖2 + ‖∇w‖
1
r+1

2 ).

So, we derive that∫ t+1

t

‖wt‖
r+2

r+2
ds ≤ Ew(t)− Ew(t+ 1) + C5

∫ t+1

t

‖∇w(s)‖2ds ≡ G(t)2. (15)

For all t1 ∈ [t, t+ 1
4 ], t2 ∈ [t+ 3

4 , t+ 1], there exists

‖wt(ti)‖22 ≤ C6G(t)
4
r+2 .

Multiplying the equation (10)− (12) by w and integrating over Ω, then
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d

dt

∫
Ω

wtwdx− ‖wt‖22‖∆w(t)‖22 +

∫
Ω

a(x)(g(ut)− g(vt))wdx

= −σ(|∇u|2)‖∇w‖22 +

∫
Ω

(
σ(|∇u|2)− σ(|∇v|2)

)
∆vwdx

−
∫

Ω

(
f(u(t))− f(v(t))

)
wdx. (16)

Integrating (16) from t1 to t2,∫ t2

t1

(
‖∆w‖22 + σ(|∇u|2)‖∇w‖22

)
ds

≤
∣∣∣∣ ∫ t2

t1

d

dt

∫
Ω

wt(s)w(s)dxds

∣∣∣∣+

∣∣∣∣ ∫ t2

t1

‖wt(s)‖22ds
∣∣∣∣

+

∣∣∣∣ ∫ t2

t1

(
(σ(|∇u|2)− σ(|∇v|2))

∫
Ω

∆v(s)w(s)dx

)
ds

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

∫
Ω

(f(u)− f(v))wdxds

∣∣∣∣+

∣∣∣∣ ∫ t2

t1

∫
Ω

a(x)(g(ut)− g(vt))wdxds

∣∣∣∣
≤ C6G(t)

4
r+2 +

1

4
sup

t≤σ≤t+1
Ew(σ) + C7

∫ t+1

t

‖∇w(s)‖2ds. (17)

Here we use the facts∫ t2

t1

∫
Ω

a(x)(g(ut)− g(vt))wdx ≤ C6G(t)
4
r+2 +

1

8
sup

t≤α≤t+1
Ew(α),∫ t2

t1

∫
Ω

(f(u)− f(v))wdxds ≤ C7

∫ t2

t1

‖∇w(s)‖2ds,

and ∫ t2

t1

{(
σ(|∇u|2)− σ(|∇v|2)

)∫
Ω

∆vwdx

}
ds ≤ C7

∫ t2

t1

‖∇w‖2ds.

Then by definition Ew(t) and (17), we get∫ t2

t1

Ew(s)ds ≤ C6G(t)
4
r+2 +

1

4
sup

t≤σ≤t+1
Ew(σ) + C7

∫ t+1

t

‖∇w(s)‖2ds.

By Mean Value Theorem, there exists t∗ ∈ [t1, t2] such that

Ew(t∗) ≤ C6G(t)
4
r+2 +

1

2
sup

t≤σ≤t+1
Ew(σ) + C7

∫ t+1

t

‖∇w(s)‖2ds. (18)

Also, using (15) we can derive that

sup
t≤α≤t+1

Ew(α) ≤ Ew(t∗) +G(t)2 + 2C5

∫ t+1

t

‖∇w(s)‖ds.
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Using this fact, property of G(t) and (18) then we obtain

sup
t≤α≤t+1

Ew(α)1+ r
2 ≤ C8(Ew(t)− Ew(t+ 1)) + C9 sup

0≤α≤T

∫ α+1

α

‖∇w(s)‖ds.

By applying Lemma 2.1 we can derive (13). So we prove that S(t) is asymptot-
ically smooth.

�
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