The purpose of this study was to train a model for the ulna and radius bone segmentation based on Convolutional Neural Networks and to verify the segmentation model. The data consisted of 840 training data, 210 tuning data, and 200 verification data. The learning model for the ulna and radius bone bwas based on U-Net (19 convolutional and 8 maximum pooling) and trained with 8 batch sizes, 0.0001 learning rate, and 200 epochs. As a result, the average sensitivity of the training data was 0.998, the specificity was 0.972, the accuracy was 0.979, and the Dice's similarity coefficient was 0.968. In the validation data, the average sensitivity was 0.961, specificity was 0.978, accuracy was 0.972, and Dice's similarity coefficient was 0.961. The performance of deep convolutional neural network based models for the segmentation was good for ulna and radius bone.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권11호
/
pp.3780-3797
/
2022
The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.
전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.
The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.
무선 기술과 모바일 장치는 비약적인 발전을 거듭하여 점점 더 힘을 얻고 있다. 이러한 배경을 두고 근래, 학습연구 분야에서 많은 연구자들이 모바일 학습상황에 대해 활발하게 연구하고 있는데, 그 이유는 조사의 저렴한 비용과 이동성과 그리고 커뮤니케이션뿐만 아니라 교육적으로도 인증된 학습효과와 사회 구성주의 때문이다. 본 연구는 유비쿼터스 학습 환경을 지원하는 컴퓨터의 개요에 대해 기술하였다. 그 결과 학습환경의 새로운 디자인은 무엇이고, 어떻게 디자인되며, 그리고 관련된 연구동향은 어떠한지를 도출하였다.
This study is to analyze the implications of effective learning in a ubiquitous environment. Research proceeded according to the multiple case study analysis method. This paper is one result of the Korean case study to examine the effectiveness of and satisfaction with u-learning. We will introduce necessary conditions for effective learning in a ubiquitous environment. Each condition was elicited through the case study, and the analyzing framework was classified into hardware related to infra structure; software such as learning contents, teaching-learning activity and support, and class management; human-ware related to learner and teacher; system-ware as an education system, and administrative supporting.
본 연구는 융합실습을 경험한 간호대학생의 핵심간호역량의 영향을 규명하는 것을 목적으로 하였고, U 광역시 소재 간호대학생 123명을 대상으로 하였다. SPSS 22.0 프로그램으로 t-검정, ANOVA, 상관관계 및 다중회귀분석을 하였다. 연구결과 핵심간호역량, 자기주도학습능력, 학습만족도, 학습성과의 평균점수는 5점 만점에 3.99점, 3.71점, 4.11점, 4.25점이었다. 간호대학생들의 핵심간호역량에 영향을 미치는 요인은 자기주도적 학습능력과 학습성과였으며 핵심간호역량을 설명하는 설명력은 29%이었다. 학습만족도는 핵심간호역량에 영향을 미치지 않은 것으로 나타났다. 본 연구결과 통해 임상실습현장에서 볼 수 있는 다양한 간호행위를 관찰하거나 시행할 수 있는 아닌 한계점을 개선하기 위해서는 양질의 교육환경 및 프로그램 개발이 마련되어야 함을 알 수 있었다. 교육환경 및 임상실습 평가에 대한 명확하고 체계적인 기준이 필요하고 실습이 다양해짐에 따라 임상실습에 대한 체계적인 표준안이 마련되어야 할 것을 제언한다.
유비쿼터스 컴퓨링과 네트워킹 환경이 준비됨에 따라 교육 분야에서도 새로운 환경에 적합한 교육학습 시스템에 대한 준비가 필요하다. 특히 유비쿼터스 컴퓨팅 환경에서는 단순히 새로운 기술을 교육학습 분야에 적용하는 것이 아니라 사고방식과 대상을 바꾸는 패러다임의 전환이 필요하다. 분야에서는 유비쿼터스 환경을 단계적으로 적용하여야 한다. 기존의 e-learning에서는 지능시스템이 교육학습 분야에 적용될 수 있는 부분이 한정되어 있었다. 그러나 유비쿼터스 맞춤형 학습 시스템을 구축할 수 있는 기본 환경이 제공하기 위하여 유비퀴터스 환경의 하부 단위에서 증강현실(augmented reality) 기술, 지능형 학습 기술들을 도출하고 적용 방법을 제안한다.
This study aims at setting the hierarchy of difficulty of the 7 Korean monophthongs for Mongolian learners of Korean according to Prator's theory based on the Contrastive Analysis Hypothesis. In addition to that, it will be shown that the difficulties and errors for Mongolian learners of Korean as a second or foreign language proceed directly from this hierarchy of difficulty. This study began by looking at the speeches of 60 Mongolians for Mongolian monophthongs; data were investigated and analyzed into formant frequencies F1 and F2 of each vowel. Then, the 7 Korean monophthongs were compared with the resultant Mongolian formant values and are assigned to 3 levels, 'same', 'similar' or 'different sound'. The findings in assessing the differences of the 8 nearest equivalents of Korean and Mongolian vowels are as follows: First, Korean /a/ and /$\wedge$/ turned out as a 'same sound' with their counterparts, Mongolian /a/ and /ɔ/. Second, Korean /i/, /e/, /o/, /u/ turned out as a 'similar sound' with each their Mongolian counterparts /i/, /e/, /o/, /u/. Third, Korean /ɨ/ which is nearest to Mongolian /i/ in terms of phonetic features seriously differs from it and is thus assigned to 'different sound'. And lastly, Mongolian /$\mho$/ turned out as a 'different sound' with its nearest counterpart, Korean /u/. Based on these findings the hierarchy of difficulty was constructed. Firstly, 4 Korean monophthongs /a/, /$\wedge$/, /i/, /e/ would be Level 0(Transfer); they would be transferred positively from their Mongolian counterparts when Mongolians learn Korean. Secondly, Korean /o/, /u/ would be Level 5(Split); they would require the Mongolian learner to make a new distinction and cause interference in learning the Korean language because Mongolian /o/, /u/ each have 2 similar counterpart sounds; Korean /o, u/, /u, o/. Thirdly, Korean /ɨ/ which is not in the Mongolian vowel system will be Level 4(Overdifferentiation); the new vowel /ɨ/ which bears little similarity to Mongolian /i/, must be learned entirely anew and will cause much difficulty for Mongolian learners in speaking and writing Korean. And lastly, Mongolian /$\mho$/ will be Level 2(Underdifferentiation); it is absent in the Korean language and doesn‘t cause interference in learning Korean as long as Mongolian learners avoid using it.
지식정보화 시대에서 정보는 사회적 부를 창출하는 수단이며 그 자체로서 가치를 지니기도 한다. 하지만 사회적 약자인 장애인들은 정보접근과 활용에서 소외되고 있다. 이를 해결하기 위해 웹접근성을 향상시키는 것이 중요한 문제이다. 이에 본 논문에서는 웹접근성의 의미와 u-러닝의 의미, 그리고 u-러닝이 주는 학습적 효과를 알아보고 u-러닝 콘텐츠에 웹접근성을 향상시켰을 때 얻을 수 있는 이점에 대해 알아보고자 하며, 장애인의 웹접근성을 향상시키는 u-러닝 콘텐츠를 개발하는 데 목적이 있다. 본 연구에서는 다음과 같은 제안을 한다. 첫째, 시작장애인을 위한 보조기능이 존재해야 한다. 둘째, u-러닝 콘텐츠의 색채구성에 유의해야 한다. 셋째, 청각장애인을 위한 서비스를 제공해야 한다. 넷째, 장애인에게 적절한 모바일 기기를 선택해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.